[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly-L-lactic acid (PLLA) is an optically active, biocompatible and biodegradable polymer that has been widely investigated as an artificial cell scaffold material. In its most crystalline form, PLLA is highly anisotropic and is one of the most piezoelectric polymers known. Conversely, amorphous PLLA exhibits little, if any, piezoelectric behavior. Compression molded PLLA films can be endowed with varying amounts of crystalline character and piezoelectricity by uniaxially stretching the polymer in a hot air bath. Understanding the precise crystalline architecture of PLLA that results from tensile drawing is important for constructing cell scaffolds that have highly tailored biodegradation and cell guiding properties. In our work here, we investigate the changes in the thermal properties of PLLA at draw ratios between 1.0 and 5.5 using differential scanning calorimetry (DSC). The crystallinity of the compression molded undrawn starting material is characterized using X-ray diffraction. Our DSC results show an increase in percent crystallinity with increasing draw up to a draw ratio of 4.0. At greater draw ratios, there is a decrease in the crystalline character exhibited by PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Tsuji, Biomaterials, 24 (2003) 537.

    Google Scholar 

  2. D. W. Grijpma, H. Altpeter, M. J. Bevis and J. Feijen, Polymer International, 51 (2002) 845.

    Google Scholar 

  3. J. Rak, J. L. Ford, C. Rostron and V. Walters, Pharm. Acta Helv., 60 (1985) 162.

    Google Scholar 

  4. H. Tsuji, Polymer, 43 (2002) 1789.

    Google Scholar 

  5. A. S. P. Lin, T. H. Barrows, S. H. Cartmell and R. E. Guldberg, Biomaterials, 24 (2003) 481.

    Google Scholar 

  6. M. A. Slivka, C. C. Chu and I. A. Adisaputro, J. Biomed. Mater. Res., 36 (1997) 469.

    Google Scholar 

  7. M. Borden, M. Attawia and C. T. Laurencin, J. Biomed. Mater. Res., 61 (2002) 421.

    Google Scholar 

  8. G. G. Giordano, T. C. Thomson, S. L. Ishaug, A. G. Mikos, S. Cumber, C. A. Garcia and D. Lahiri-Munir, J. Biomed. Mater. Res., 34 (1997) 87.

    Google Scholar 

  9. R. Langer and J. P. Vacanti, Science, 260 (1993) 920.

    Google Scholar 

  10. T. Hadlock, S. Singh, J. P. Vacanti and B. J. McLaughlin, Tissue Engineering, 5 (1999) 187.

    Google Scholar 

  11. C. Chen, J. Chueh, H. Tseng, H. Huang and S. Lee, Biomaterials, 24 (2003) 1167.

    Google Scholar 

  12. J. Y. Lim, S. H. Kim, S. Lim and Y. H. Kim, Macromol. Mater. Eng., 288 (2003) 50.

    Google Scholar 

  13. P. Mäkelä, T. Pohjonen, P. Törmälä, T. Waris and N. Ashammakhi, Biomaterials, 23 (2002) 2587.

    Google Scholar 

  14. A. Majola, Annales Chirurgiae et Gynaecologiae, 80 (1991) 274.

    Google Scholar 

  15. H. Tsuji and A. D. Carpio, Biomacromolecules, 4 (2003) 7.

    Google Scholar 

  16. Y. Ikada, K. Jamshidi, H. Tsuji and S. H. Hyon, Macromolecules, 20 (1987) 904.

    Google Scholar 

  17. J. K. Lee, K. H. Lee and B. S. Jin, Eur. Pol. J., 37 (2001) 907.

    Google Scholar 

  18. Y. Maeda, J. Therm. Anal. Cal., 70 (2002) 669.

    Google Scholar 

  19. D. Cohn, H. Younes and G. Marom, Polymer, 28 (1987) 2018.

    Google Scholar 

  20. F. W. Billmeyer, Jr., Textbook of Polymer Science, John Wiley and Sons, New York 1984, p. 482.

    Google Scholar 

  21. T. Ochiai and E. Fukada, Jpn. J. Appl. Phys., 37 (1998) 3374.

    Google Scholar 

  22. E. Fukada, Biorheology, 32 (1995) 593.

    Google Scholar 

  23. Y. Ikada, Y. Shikinami, Y. Hara, M. Tagawa and E. Fukada, J. Biomed. Mat. Res., 30 (1996) 553.

    Google Scholar 

  24. W. J. Landis, Connect. Tissue Res., 34 (1996) 239.

    Google Scholar 

  25. L. E. Alexander, X-ray Diffraction Methods in Polymer Science, Wiley, New York 1969, p. 335.

    Google Scholar 

  26. Gombás, P. Szabó-Révész, M. Kata, G. Regdon Jr. and I. Erös, J. Therm. Anal. Cal., 68 (2002) 503.

    Google Scholar 

  27. D. Cam, S. Hyon and Y. Ikada, Biomaterials, 16 (1995) 833.

    Google Scholar 

  28. E. W. Fischer, H. J. Sterzel and G. Wegner, Kolloid-Z. u. Z. Polymers, 251 (1973) 980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, J.F., Riga, A., O'Connor, A. et al. Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry 75, 257–268 (2004). https://doi.org/10.1023/B:JTAN.0000017347.08469.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000017347.08469.b1

Navigation