[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An Analytical Model for the ‘Large, Fluctuating Synaptic Conductance State’ Typical of Neocortical Neurons In Vivo

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A model of in vivo-like neocortical activity is studied analytically in relation to experimental data and other models in order to understand the essential mechanisms underlying such activity. The model consists of a network of sparsely connected excitatory and inhibitory integrate-and-fire (IF) neurons with conductance-based synapses. It is shown that the model produces values for five quantities characterizing in vivo activity that are in agreement with both experimental ranges and a computer-simulated Hodgkin-Huxley model adapted from the literature (Destexhe et al. (2001) Neurosci. 107(1): 13–24). The analytical model builds on a study by Brunel (2000) (J. Comput. Neurosci. 8: 183–208), which used IF neurons with current-based synapses, and therefore does not account for the full range of experimental data. The present results suggest that the essential mechanism required to explain a range of data on in vivo neocortical activity is the conductance-based synapse and that the particular model of spike initiation used is not crucial. Thus the IF model with conductance-based synapses may provide a basis for the analytical study of the ‘large, fluctuating synaptic conductance state’ typical of neocortical neurons in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds.) (1972) Handbook of Mathematical Functions. Dover Publications, New York.

    Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7: 237-252.

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large varibality in evoked cortical responses. Science 273: 1868-1871.

    Google Scholar 

  • Aviel Y, Pavlov E, Abeles M, Horn D (2002) Synfire chain in a balanced network. Neurocomput. 44-46: 285-292.

    Google Scholar 

  • Azouz R, Gray CM (1999) Cellular mechanisms contribute to response variablity of cortical neurons in vivo. J. Neurosci. 19(6): 2209-2223.

    Google Scholar 

  • Bernander O, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88: 11569-11573.

    Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8: 183-208.

    Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillation in networks of integrate-and-fire N with low firing rates. Neural. Comput. 11: 1621-1671.

    Google Scholar 

  • Brunel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics. J. Theor. Neurobiol. 195: 87-95.

    Google Scholar 

  • Bugmann G, Christodoulou C, Taylor JG (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput. 9: 985-1000.

    Google Scholar 

  • Burkitt AN (2000) Balanced neurons: Analysis of leaky integrateand-fire neurons with reversal potential. Biol. Cybern. 85: 247-255.

    Google Scholar 

  • Burkitt AN, Meffin H, Grayden DB (2003) Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol. Cybern. 89: 119-125.

    Google Scholar 

  • Câteau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks 14: 675-685.

    Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35: 773-782.

    Google Scholar 

  • Destexhe A (2001) Simulations of in-vivo-like activity in neocortical neurons using fluctuating synaptic conductances. http://cns.iaf.cnrs-gif.fr/alain demos.html.

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyrimidal neurons in vivo. J. Neurophysiol. 81: 1531-1547.

    Google Scholar 

  • Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in-vivo-like activity in neocortical neurons. Neurosci. 107: 13-24.

    Google Scholar 

  • Doedel EJ, Paffenroth RC, Champneys AR, Fairgrieve TF, Kuznetov YA, Sandstede B, Wang X (2000) AUTO2000: Continuation and Bifurcation Software for ODE's. http://www.ama.caltech.edu/ redrod/auto2000/distribution.

  • Feng J, Brown D (1998) Spike output jitter, mean firing time and coefficient of variation. J. Phys. A. 31: 1239-1252.

    Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys. J. 4: 41-68.

    Google Scholar 

  • Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10: 1047-1065.

    Google Scholar 

  • Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290: 739-744.

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9: 1179-1209.

    Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19: 165-186.

    Google Scholar 

  • Kisley MA, Gerstein GL (1999) The continuum of operating modes for passive model neurons. Neural Comput. 11: 1139-1154.

    Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchonous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22: 361-374.

    Google Scholar 

  • Longtin A, Doiron B, Bulsara, AR (2002) Noise-induced divisive gain control in neuron models. BioSys. 67: 147-156.

    Google Scholar 

  • Mel BW (1999) Why have dendrites? A computational perspective. In: GJ Stuart, N Spruston, M H¨usser, eds. Dendrites. Oxford Uni. Press, NY, pp. 271-289.

    Google Scholar 

  • Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of spiking neurons to correlated input. Phys. Rev. Lett. 89(28): 288101.

    Google Scholar 

  • Panzeri S, Rolls ET, Battaglia F, Lavis R (2001) Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network: Comput. Neural Syst. 12: 423-440.

    Google Scholar 

  • Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79: 1450-1460.

    Google Scholar 

  • Pongracz F, Firestein S, Shepard GM (1991) Electrotonic structure of olafactory sensory neurons analysed by intracellular and whole cell patch techniques. J. Neurophysiol. 65: 747-758.

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rudolph M, Destexhe A (2003a) The discharge variability of neocortical neurons during high-conductance states. Neurosci. 119: 855-873.

    Google Scholar 

  • Rudolph M, Destexhe A (2003b) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 24(6): 2466-2476.

    Google Scholar 

  • Rudolph M, Destexhe A (2003c) Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J. Comput. Neurosci. 14(3): 239-251.

    Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20: 6193-6209.

    Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4: 569-579.

    Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18: 3870-3896.

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13: 334-350.

    Google Scholar 

  • Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67: 508-529.

    Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1(3): 210-217.

    Google Scholar 

  • Stuart G, Spruston N, Häusser M (1999) Dendrites. Oxford Unversity Press, NY.

    Google Scholar 

  • Tetzlaff T, Giesel T, Diesmann M (2002) The ground state of cortical feedforward networks. Neurocomput. 44-46: 673-678.

    Google Scholar 

  • Tiesinga PHE, José JV, Sejnowski TJ (2000) Comparison of currentdriven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. Phys. Rev. E 62: 8413-8419.

    Google Scholar 

  • Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network: Comput. Neural Syst. 4: 259-284.

    Google Scholar 

  • Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9: 971-983.

    Google Scholar 

  • Tsodyks MV, Sejnowski TJ (1995) Rapid state switching in balanced cortical network models. Network: Comput. Neural Sys. 6: 111-124.

    Google Scholar 

  • Tsodyks MV, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1945.

    Google Scholar 

  • Tuckwell HC (1988a) Introduction to Theoretical Neurobiology: Vol. 1, Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tuckwell HC (1988b) Introduction to Theoretical Neurobiology: Vol. 2, Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge.

    Google Scholar 

  • Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations cause high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Comput. 6: 795-836.

    Google Scholar 

  • van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.

    Google Scholar 

  • van Rossum MCW, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22: 1956-1966.

    Google Scholar 

  • van Vreeswijk C, Somplinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724-1726.

    Google Scholar 

  • van Vreeswijk C, Somplinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput. 10: 1321-1371.

    Google Scholar 

  • Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendrtic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83: 3177-3182.

    Google Scholar 

  • Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295: 1907-1910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meffin, H., Burkitt, A.N. & Grayden, D.B. An Analytical Model for the ‘Large, Fluctuating Synaptic Conductance State’ Typical of Neocortical Neurons In Vivo . J Comput Neurosci 16, 159–175 (2004). https://doi.org/10.1023/B:JCNS.0000014108.03012.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81

Navigation