Abstract
We introduce for a crossed module (T,G,∂) an invariant H 2 q(T,G,∂) (q being a nonnegative integer) that generalizes the second Eilenberg–MacLane homology group with coefficients in Z q . We give for a q-perfect crossed module, the universal q-central extension via the non-abelian tensor product modulo q of two crossed modules, whose kernel is the mentioned invariant.
Similar content being viewed by others
References
Baues, H. J.: Combinatorial Homotopy and 4-Dimensional Complexes, DeGruyter, 1991.
Brown, R.: q-perfect groups and universal q-central extensions, Publ. Math. 34 (1990), 291–297.
Brown, R.: Groupoids and crossed objects in algebraic topology, Homology, Homotopy and Applications 1 (1999), 1–78.
Brown, R. and Spencer, C.: G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 296–302.
Carrasco, P., Cegarra, A.M. and Grandjeán, A. R.: (Co)Homology of crossed modules, Journal of Pure and Applied Algebra 168(2–3) (2002), 147–176.
Conduché, D. and Rodríguez, C.: Non-abelian tensor and exterior products modulo q and universal q-central relative extension, Journal of Pure and Applied Algebra 78(2) (1992), 139–160.
Doncel Juárez, J. L. and Grandjeán, A. R.: q-perfect crossed modules, Journal of Pure and Applied Algebra 81 (1992), 279–292.
Ellis, G. J.: Tensor products and q-crossed modules, The Journal of the London Mathematical Society (2) 51 (1995), 243–258.
Gilbert, N. D.: The low-dimensional homology of crossed modules, Homology, Homotopy and Applications 2 (2000), 41–50.
Gran, M.: Internal categories in Malc'cev categories, Journal of Pure and Applied Algebra 143 (1999), 221–229.
Gran, M.: Central extensions and internal groupoids in Maltsev categories, Journal of Pure and Applied Algebra 155 (2001), 139–166.
Grandjeán, A. R. and Ladra, M.: H 2(T, G, ∂) and central extensions for crossed modules, Proceedings of the Edinburgh Mathematical Society (2) 42 (1999), 169–177.
Grandjeán, A. R. and Ladra, M.: On totally free crossed modules, Glasgow Mathematical Journal 40 (1998), 323–332.
Hilton, P. J. and Stammbach, U.: A Course in Homological Algebra, Springer, Berlin, 1971.
Inassaridze, N.: On Nonabelian tensor product modulo q of groups, Communications in Algebra, to appear.
Janelidze, G. and Kelly, G.M.: Galois theory and a general notion of central extension, Journal of Pure and Applied Algebra 97 (1994), 135–161.
Ladra, M.: Módulos Cruzados y Extensiones de Grupos, Alxebra, Vol. 37, Univ. Santiago de Compostela, Santiago de Compostela, 1984.
Ladra, M. and Grandjeán, A. R.: Crossed modules and homology, Journal of Pure and Applied Algebra 95 (1994), 41–55.
Loday, J.-L.: Cohomologie et groupe de Steinberg relatifs, Journal of Algebra 54 (1978), 178–202.
Norrie, K. J.: Crossed modules and analogues of group theorems, Ph.D. Thesis, King's College, University of London, 1987.
Pressman, I. S.: Functors whose domain is a category of morphisms, Acta Mathematica 118 (1967), 223–249.
Ratcliffe, J. G.: Free and projective crossed modules, The Journal of the London Mathematical Society (2) 22 (1980), 66–74.
Stammbach, U.: Homology in Group Theory, Lecture Notes in Math. 39, Springer, Berlin, 1973.
Whitehead, J. H. C.: Combinatorial homotopy II, Bulletin. American Mathematical Society 55 (1949), 453–496.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Grandjeán, A.R., López, M.P. H 2 q(T,G,∂) and q-perfect Crossed Modules. Applied Categorical Structures 11, 171–184 (2003). https://doi.org/10.1023/A:1023507229607
Issue Date:
DOI: https://doi.org/10.1023/A:1023507229607