[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

H 2 q(T,G,∂) and q-perfect Crossed Modules

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce for a crossed module (T,G,∂) an invariant H 2 q(T,G,∂) (q being a nonnegative integer) that generalizes the second Eilenberg–MacLane homology group with coefficients in Z q . We give for a q-perfect crossed module, the universal q-central extension via the non-abelian tensor product modulo q of two crossed modules, whose kernel is the mentioned invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baues, H. J.: Combinatorial Homotopy and 4-Dimensional Complexes, DeGruyter, 1991.

  2. Brown, R.: q-perfect groups and universal q-central extensions, Publ. Math. 34 (1990), 291–297.

    Google Scholar 

  3. Brown, R.: Groupoids and crossed objects in algebraic topology, Homology, Homotopy and Applications 1 (1999), 1–78.

    Google Scholar 

  4. Brown, R. and Spencer, C.: G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 296–302.

    Google Scholar 

  5. Carrasco, P., Cegarra, A.M. and Grandjeán, A. R.: (Co)Homology of crossed modules, Journal of Pure and Applied Algebra 168(2–3) (2002), 147–176.

    Google Scholar 

  6. Conduché, D. and Rodríguez, C.: Non-abelian tensor and exterior products modulo q and universal q-central relative extension, Journal of Pure and Applied Algebra 78(2) (1992), 139–160.

    Google Scholar 

  7. Doncel Juárez, J. L. and Grandjeán, A. R.: q-perfect crossed modules, Journal of Pure and Applied Algebra 81 (1992), 279–292.

    Google Scholar 

  8. Ellis, G. J.: Tensor products and q-crossed modules, The Journal of the London Mathematical Society (2) 51 (1995), 243–258.

    Google Scholar 

  9. Gilbert, N. D.: The low-dimensional homology of crossed modules, Homology, Homotopy and Applications 2 (2000), 41–50.

    Google Scholar 

  10. Gran, M.: Internal categories in Malc'cev categories, Journal of Pure and Applied Algebra 143 (1999), 221–229.

    Google Scholar 

  11. Gran, M.: Central extensions and internal groupoids in Maltsev categories, Journal of Pure and Applied Algebra 155 (2001), 139–166.

    Google Scholar 

  12. Grandjeán, A. R. and Ladra, M.: H 2(T, G, ∂) and central extensions for crossed modules, Proceedings of the Edinburgh Mathematical Society (2) 42 (1999), 169–177.

    Google Scholar 

  13. Grandjeán, A. R. and Ladra, M.: On totally free crossed modules, Glasgow Mathematical Journal 40 (1998), 323–332.

    Google Scholar 

  14. Hilton, P. J. and Stammbach, U.: A Course in Homological Algebra, Springer, Berlin, 1971.

    Google Scholar 

  15. Inassaridze, N.: On Nonabelian tensor product modulo q of groups, Communications in Algebra, to appear.

  16. Janelidze, G. and Kelly, G.M.: Galois theory and a general notion of central extension, Journal of Pure and Applied Algebra 97 (1994), 135–161.

    Google Scholar 

  17. Ladra, M.: Módulos Cruzados y Extensiones de Grupos, Alxebra, Vol. 37, Univ. Santiago de Compostela, Santiago de Compostela, 1984.

  18. Ladra, M. and Grandjeán, A. R.: Crossed modules and homology, Journal of Pure and Applied Algebra 95 (1994), 41–55.

    Google Scholar 

  19. Loday, J.-L.: Cohomologie et groupe de Steinberg relatifs, Journal of Algebra 54 (1978), 178–202.

    Google Scholar 

  20. Norrie, K. J.: Crossed modules and analogues of group theorems, Ph.D. Thesis, King's College, University of London, 1987.

  21. Pressman, I. S.: Functors whose domain is a category of morphisms, Acta Mathematica 118 (1967), 223–249.

    Google Scholar 

  22. Ratcliffe, J. G.: Free and projective crossed modules, The Journal of the London Mathematical Society (2) 22 (1980), 66–74.

    Google Scholar 

  23. Stammbach, U.: Homology in Group Theory, Lecture Notes in Math. 39, Springer, Berlin, 1973.

    Google Scholar 

  24. Whitehead, J. H. C.: Combinatorial homotopy II, Bulletin. American Mathematical Society 55 (1949), 453–496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandjeán, A.R., López, M.P. H 2 q(T,G,∂) and q-perfect Crossed Modules. Applied Categorical Structures 11, 171–184 (2003). https://doi.org/10.1023/A:1023507229607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023507229607

Navigation