[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Application of Temporal Descriptors to Musical Instrument Sound Recognition

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

An automatic content extraction from multimedia files is recently being extensively explored. However, an automatic content description of musical sounds has not been broadly investigated and still needs an intensive research. In this paper, we investigate how to optimize sound representation in terms of musical instrument recognition purposes. We propose to trace trends in the evolution of values of MPEG-7 descriptors in time, as well as their combinations. Described process is a typical example of KDD application, consisting of data preparation, feature extraction and decision model construction. Discussion of efficiency of applied classifiers illustrates capabilities of possible progress in the optimization of sound representation. We believe that further research in this area would provide background for an automatic multimedia content description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, I. (1996). Fast Discovery of Association Rules. In Proc. of the Advances in Knowledge Discovery and Data Mining (pp. 307–328). CA: AAAI Press/The MIT Press.

    Google Scholar 

  • Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules. In Proc. of the VLDB Conference, Santiago, Chile.

  • Ando, S. and Yamaguchi, K. (1993). Statistical Study of Spectral Parameters in Musical Instrument Tones. J. Acoust. Soc. of America, 94(1), 37–45.

    Google Scholar 

  • Batlle, E. and Cano, P. (2000). Automatic Segmentation for Music Classification Using Competitive Hidden Markov Models. In Proceedings of International Symposium on Music Information Retrieval. Plymouth, MA. Available at http://www.iua.upf.es/mtg/publications/ismir2000-eloi.pdf.

  • Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., and Wróblewski, J. (2000). Rough Set Algorithms in Classification Problem. In L. Polkowski, S. Tsumoto, and T.Y. Lin (Eds.), Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems (pp. 49–88). Physica-Verlag.

  • Bazan, J.G. and Szczuka, M. (2000). RSES and RSESlib–A Collection of Tools for Rough Set Computations. In W. Ziarko and Y.Y. Yao (Eds.), Proc. of RSCTC'00, Banff, Canada. See also: http://alfa.mimuw.edu.pl/~rses/.

  • Bazan, J.G., Szczuka, M., and Wróblewski, J. (2002). A New Version of Rough Set Exploration System. In Proc. of RSCTC'02. See also: http://alfa.mimuw.edu.pl/~rses/.

  • Beauchamp, J.W., Maher, R., and Brown, R. (1993). Detection of Musical Pitch from Recorded Solo Performances. 94th AES Convention, preprint 3541, Berlin.

  • Box, G.E.P. and Tiao, G.C. (1992). Bayesian Inference in Statistical Analysis. Wiley.

  • Brown, J.C. (1999). Computer Identification of Musical Instruments Using Pattern Recognition with Cepstral Coefficients as Features. J. Acoust. Soc. of America, 105, 1933–1941.

    Google Scholar 

  • Brown, J.C., Houix, O., and McAdams, S. (2001). Feature Dependence in the Automatic Identification of Musical Woodwind Instruments. J. Acoust. Soc. of America, 109, 1064–1072.

    Google Scholar 

  • Brown, J.C. and Zhang, B. (1991). Musical Frequency Tracking Using the Methods of Conventional and ‘Narrowed’ Autocorrelation. J. Acoust. Soc. Am., 89, 2346–2354.

    Google Scholar 

  • Cook, P.R., Morrill, D., and Smith, J.O. (1992). An Automatic Pitch Detection and MIDI Control System for Brass Instruments. Invited for special session on Automatic Pitch Detection, Acoustical Society of America, New Orleans.

    Google Scholar 

  • Cooper, D. and Ng, K.C. (1994). AMonophonic Pitch Tracking Algorithm. Available at http://citeseer.nj.nec.com/cooper94monophonic.html.

  • Cosi, P., De Poli, G., and Lauzzana, G. (1994). Auditory Modelling and Self-Organizing Neural Networks for Timbre Classification. Journal of New Music Research, 23, 71–98.

    Google Scholar 

  • de la Cuadra, P., Master, A., and Sapp, C. (2001). Efficient Pitch Detection Techniques for Interactive Music. ICMC. Available at http://www-ccrma.stanford.edu/pdelac/PitchDetection/icmc01-pitch.pdf.

  • Doval, B. and Rodet, X. (1991). Estimation of Fundamental Frequency of Musical Sound Signals. IEEE, A2.11, 3657–3660.

    Google Scholar 

  • Düntsch, I., Gediga, G., and Nguyen, H.S. (2000). Rough Set Data Analysis in the KDD Process. In Proc. of IPMU 2000, 1 (pp. 220–226). Madrid, Spain.

    Google Scholar 

  • Eronen, A. and Klapuri, A. (2000) Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2000 (pp. 753–756). Plymouth, MA.

  • Fujinaga, I. and McMillan, K. (2000). Realtime Recognition of Orchestral Instruments. In Proceedings of the International Computer Music Conference (pp. 141–143).

  • Herrera, P., Amatriain, X., Batlle, E., and Serra, X. (2000). Towards Instrument Segmentation for Music Content Description: A Critical Review of Instrument Classification Techniques. In Proc. of International Symposium on Music Information Retrieval (ISMIR 2000), Plymouth, MA.

  • ISO/IEC JTC1/SC29/WG11 (2002). MPEG-7 Overview. Available at http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm.

  • Kaminskyj, I. (2000). Multi-feature Musical Instrument Classifier. MikroPolyphonie 6 (online journal at http://farben.latrobe.edu.au/).

  • Kostek, B. and Czyzewski, A. (2001). Representing Musical Instrument Sounds for their Automatic Classification. J. Audio Eng. Soc., 49(9), 768–785.

    Google Scholar 

  • Kostek, B. and Wieczorkowska, A. (1997). Parametric Representation of Musical Sounds. Archive of Acoustics, 22(1), Institute of Fundamental Technological Research, Warsaw, Poland, (pp. 3–26).

    Google Scholar 

  • Lindsay, A.T. and Herre, J. (2001). MPEG-7 and MPEG-7 Audio–An Overview. J. Audio Eng. Soc., 49(7/8), 589–594.

    Google Scholar 

  • Liu, H. and Motoda, H. (Eds.) (1998). Feature Extraction, Construction and Selection–A Data Mining Perspective. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Mannila, H., Toivonen, H., and Verkamo, A.I. (1998). Discovery of Frequent Episodes in Event Sequences. Report C-1997-15, University of Helsinki, Finland.

    Google Scholar 

  • Martin, K.D. and Kim, Y.E. (1998). 2pMU9. Musical Instrument Identification: A Pattern-Recognition Approach. 136-th Meeting of the Acoustical Soc. of America, Norfolk, VA.

  • Mitchell, T. (1998). Machine Learning. McGraw Hill.

  • Nguyen, H.S. (1997). Discretization od RealValue Attributes: Boolean Reasoning Approach. Rozprawa doktorska. Uniwersytet Warszawski.

  • Nguyen, H.S. (1997). Discretization od Real Value Attributes: Boolean Reasoning Approach. Ph.D. Dissertation, Warsaw University, Poland.

    Google Scholar 

  • Nguyen, S.H. (2000). Regularity Analysis and Its Applications in Data Mining. Ph.D. Dissertation, Warsaw University, Poland.

    Google Scholar 

  • Opolko, F. and Wapnick, J. (1987). MUMS–McGill University Master Samples. CD's.

  • Pawlak, Z. (1991). Rough Sets–Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Peeters, G., McAdams, S., and Herrera, P. (2000). Instrument Sound Description in the Context of MPEG-7. In Proc. International Computer Music Conf. (ICMC'2000), Berlin. Available at http://www.iua.upf.es/mtg/publications/icmc00-perfe.pdf.

  • Polkowski, L. and Skowron, A. (Eds.) (1998). Rough Sets in Knowledge Discovery 1, 2. Physica-Verlag, Heidelberg.

    Google Scholar 

  • Pollard, H.F. and Jansson, E.V. (1982). A Tristimulus Method for the Specification of Musical Timbre. Acustica, 51, 162–171.

    Google Scholar 

  • Ślęzak, D. (2001). Approximate Decision Reducts. Ph.D. Thesis, Institute of Mathematics, Warsaw University.

    Google Scholar 

  • Ślęzak, D., Synak, P., Wieczorkowska, A.A., and Wróblewski, J. (2002). KDD-Based Approach to Musical Instrument Sound Recognition. In M.-S. Hacid, Z.W. Ras, D. Zighed, and Y. Kodratoff (Eds.), Foundations of Intelligent Systems (pp. 29–37), LNCS/LNAI 2366, Springer.

  • Ślęzak, D. and Wróblewski, J. (1999). Classification Algorithms Based on Linear Combinations of Features. In Proc. of PKDD'99 (pp. 548–553). Praga, Czech Republik: LNAI 1704, Springer, Heidelberg. Available at http://www.mimuw.edu.pl/~jakubw/bib/.

    Google Scholar 

  • Synak, P. (2000). Temporal Templates and Analysis of Time Related Data. In W. Ziarko and Y.Y. Yao (Eds.), Proc. of RSCTC'00, Banff, Canada.

  • Toiviainen, P. (1996). Optimizing Self-Organizing Timbre Maps: Two Approaches. Joint International Conference, II Int. Conf. on Cognitive Musicology (pp. 264–271). College of Europe at Brugge, Belgium.

    Google Scholar 

  • Wieczorkowska, A.A. (1999a). The Recognition Efficiency of Musical Instrument Sounds Depending on Parameterization and Type of a Classifier. Ph.D. Thesis (in Polish), Technical University of Gdansk, Poland.

    Google Scholar 

  • Wieczorkowska, A.(1999b). Rough Sets as a Tool for Audio Signal Classification. In Z.W. Ras and A. Skowron (Eds.), Foundations of Intelligent Systems (pp. 367–375). LNCS/LNAI 1609, Springer.

  • Wieczorkowska, A.A. and Raś, Z.W. (2001). Audio Content Description in Sound Databases. In N. Zhong, Y. Yao, J. Liu, and S. Ohsuga (Eds.), Web Intelligence: Research and Development (pp. 175–183). LNCS/LNAI 2198, Springer.

  • Wróblewski, J.(2000). Analyzing Relational Databases Using Rough Set Based Methods. In Proc. of IPMU'00 1 (pp. 256–262), Madrid, Spain. Available at http://www.mimuw.edu.pl/~jakubw/bib/.

  • Wróblewski, J. (2001a). Ensembles of Classifiers Based on Approximate Reducts. Fundamenta Informaticae 47(3,4), IOS Press (pp. 351–360). Available at http://www.mimuw.edu.pl/~jakubw/bib/.

    Google Scholar 

  • Wróblewski, J. (2001b). Adaptive Methods of Object Classification. Ph.D. Thesis, Institute of Mathematics, Warsaw University. Available at http://www.mimuw.edu.pl/~jakubw/bib/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieczorkowska, A.A., Wróblewski, J., Synak, P. et al. Application of Temporal Descriptors to Musical Instrument Sound Recognition. Journal of Intelligent Information Systems 21, 71–93 (2003). https://doi.org/10.1023/A:1023505917953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023505917953

Navigation