Abstract
We describe the basic ideas behind the extension of the Digital Physics paradigm to include reactive flow capabilities. An application to catalytic conversion is presented.
Similar content being viewed by others
REFERENCES
Benzi, R., Succi, S., and Vergassola, M. (1992). Physics Reports 222, 145.
CHEMKIN-II (1994). A Fortran chemical-kinetics package for the analysis of gas phase chemical kinetics, Sandia Report SAND89-8009B.
Chen, H. (1995). J. Stat. Phys. 81, 347.
Creutz, M. (1983). Quark, Gluons and Lattices, Cambridge University Press.
Doolen, G. D. (ed.) (1990). Lattice Gas Methods for PDEs: Theory, Applications and Hardware. Physica D 47.
Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., and Rivet J. P. (1987). Complex Systems 1, 649.
Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Phys. Rev. Lett. 56, 1505.
Molvig, K., Donis, P., Myczkowksi, J., and Vichniac, G. (1988). In Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Monaco, R. (ed.), World Scientific.
Oran, E., and Boris, J. (1987). Numerical Simulation of Reactive Flow, Elsevier Science, New York.
Teixeira, C. (1990). Digital Physics, Ph. D. Thesis, M.I.T.
Succi, S., Bella, G., Chen, H., Molvig, K., and Teixeira, C. (1998). Proceedings of Computer Simulations of Rare Events and the Dynamics of Classical and Quantum Condensed Phase Systems, World Scientific Singapore, p. 269.
Succi, S., Bella, G., Chen, H., Molvig, K., and Teixeira, C. (1999). J. Comp. Phys. 152, 493–516.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bernaschi, M., Succi, S., Bella, G. et al. Digital Physics Simulations of Reactive Flow in a Catalytic Converter. Journal of Scientific Computing 14, 211–222 (1999). https://doi.org/10.1023/A:1023216017749
Issue Date:
DOI: https://doi.org/10.1023/A:1023216017749