Abstract
In this paper we consider the relations existing between four deductive systems that have been called “categorial grammars” and have relevant connections with linguistic investigations: the syntactic calculus, bilinear logic, compact bilinear logic and Curry's semantic calculus.
Similar content being viewed by others
References
Abrusci, V. M. (1991), ‘Phase semantics and sequent calculus for pure Noncommutative Classical Linear Propositional Logic’, The Journal of Symbolic Logic 56,4, 1403-1451.
Abrusci, V. M. (1995), ‘Noncommutative proof nets’ in Girard et al. (eds.), Advances in Linear Logic, Cambridge University Press, Cambridge, 271-296.
Abrusci, V. M. (1996), ‘Lambek calculus, Cyclic Multiplicative-Additive Linear Logic, Noncommutative Multiplicative-Additive Linear Logic: language and sequent calculus’ in Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, Bologna, CLUEB, 21-48.
Abrusci, V. M., and E. Maringelli (1998), ‘A new correctness criterion for cyclic proof nets’, Journal of Logic, Language and Information 7, 449-459.
Ades, A. E., and M. J. Steedman (1982), ‘On the order of words’, Linguistics and Philosophy 4, 517-558.
Ajdukiewicz, K. (1935), ‘Die syntaktische Konnexität’, Studia Philosophica 1, 1-27; Eng. trans. 'syntactic connexion’, in S. McCall (ed.) (1967).
Bar-Hillel, Y. (1953), ‘A quasi-arithmetical notation for syntactic description’, Language 29, 47-58.
Barr, M. (1979), ‘*-Autonomous Categories’, Springer LNM 752, Berlin.
Barr, M. (1996), ‘Autonomous categories, revisited’, Journal of Pure and Applied Algebra 111, 1-20.
Benthem, J. van (1988), ‘The Lambek calculus’, in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 35-68.
Buszkowski, W. (1982), ‘Lambek's Categorial Grammars’, Institute of Mathematics, Adam Mickiewicz University, Poznań, Poland.
Buszkowski, W. (1985), ‘The equivalence of unidirectional Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 31, 308-384.
Buszkowski, W. (1986), ‘Generative capacity of nonassociative Lambek calculus’, Bulletin of Polish Academy of Sciences (Mathematics) 34, 507-516.
Buszkowski, W., W. Marciszewski and J. van Benthem (eds.) (1990), Categorial Grammar, J. Benjamin, Amsterdam.
Casadio, C. (1988), ‘Semantic categories and the development of categorial grammars’ in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 95-123.
Casadio, C. (1997), ‘Unbounded dependencies in Non-commutative Linear Logic’, in Proceedings of the Conference Formal Grammar, ESSLLI 1997, Aix en Provence.
Casadio, C. (1999), ‘Minimalism and the logical structure of the lexicon’, in C. Retoré and E. Stabler (eds.), Resource Logics and Minimalist Grammar, ESSLLI99, Utrecht.
Casadio, C. (2001), ‘Non-commutative linear logic in linguistics’, Grammars, 3/4, 1-19.
Casadio, C, and J. Lambek (2001), ‘An algebraic analysis of clitic pronouns in Italian’, in P. de Groote, G. Morrill and C. Retoré, editors, Logical Aspects of Computational Linguistics, 110-124, Springer, Berlin, 2001.
Chomsky, N. (1995), The Minimalist Program, Cambridge, Mass., The MIT Press.
Cockett, J.R.B., and R. A. G. Seely (1997a), ‘Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories’, Theory and Applications of Categories 3, 85-131.
Cockett, J. R. B., and R. A. G. Seely (1997b), ‘Weakly distributive categories’, Journal of Pure and Applied Algebra 114, 133-173.
Curry, H. B. (1961), ‘Some logical aspects of grammatical structure’, in R. Jacobson (ed.), Structure of Language and its Mathematical Aspects, in AMS Proc. Symposia Applied Mathematics 12, 56-67.
Došen, K., and P. Schroeder-Heister (eds.)(1993), Substructural Logics, Oxford University Press, Oxford.
Eilenberg, S., and S. Mac Lane (1945), ‘General theory of natural equivalences’, Trans. Amer. Math. Soc. 58, 231-294.
Geach, P. T. (1972) ‘A program for syntax’, in D. Davidson and G. Harman (eds.)(1972), Semantics of Natural Language, Reidel, Dordrecht, 483-497.
Girard, J. Y. (1987), ‘Linear logic’, Theoretical Computer Science, 50, 1-102.
Girard, J. Y. (1995), ‘Linear logic: its syntax and semantics’, in Girard et al. (eds.) Advances in Linear Logic, Cambridge University Press, Cambridge.
Grishin, V. N., (1983), ‘On a generalization of the Ajdukiewicz-Lambek system’, Studies in Non-Commutative Logics and Formal Systems, Nauka, Moscow, 315-343.
Harris, Z. (1966), ‘A cycling cancellation-automaton for sentence well-formedness’, International Computation Centre Bulletin 5, 69-94.
Jackendoff, R. (1977), X-bar Syntax: a study of phrase structure, Linguistic Inquiry Monograph 2, The MIT Press, Cambridge, Mass.
Jackendoff, R. (1997), The Architecture of the Language Faculty, Linguistic Inquiry Monograph 28, The MIT Press, Cambridge, Mass.
Kandulski, M. (1988), ‘The equivalence of nonassociative Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 34, 41-52.
Kandulski, M. (1999), ‘Strong equivalence of generalized Ajdukiewicz and Lambek grammars’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 54-69.
Kelly, G. M. (1972), ‘Many-variable functorial calculus I’, in S. Mac Lane (ed.), Coherence in Categories, Springer LNM 281.
Lamarche, F., and C. Retoré (1996), ‘Proof nets for the Lambek calculus — an overview’, in V. M. Abrusci and C. Casadio (eds.), Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, CLUEB, Bologna, 241-262.
Lambek, J. (1958), ‘The mathematics of sentence structure’, American Mathematical Monthly 65, 154-70.
Lambek, J. (1993), ‘From categorial grammar to bilinear logic’, in Došen et al. (eds.), 207-237.
Lambek, J. (1995a), ‘Cut elimination for classical bilinear logic’, Fundamenta Informaticae 22, 55-67.
Lambek, J. (1995b), ‘Bilinear logic in algebra and linguistics’, in Girard et al. (eds.), Advances in Linear Logic, Cambridge, Cambridge University Press, 43-60.
Lambek, J. (1999), ‘Type grammars revisited’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1-27.
Lambek, J. (2000), ‘Pregroups: a new algebraic approach to sentence structure’, in C. Martí n-Vide and G. Paun (eds.), Recent Topics in Mathematical and Computational Linguistics, Editura Academici Române, Bucharest.
Lambek, J. (2001), ‘Type grammars as pregroups’, Grammars 4, 21-39.
Lecomte, A. and C. Retoré (1995), ‘Pomset logic as an alternative to categorial grammar’, in Proceedings of the Conference on “Formal Grammar”, ESSLLI 1995, Barcelona.
McCall, S. (ed.) (1967), Polish Logic, Clarendon Press, Oxford.
Moortgat, M. (1988), Categorial Investigations. Logical and linguistic aspects of the Lambek calculus, Foris, Dordrecht.
Moortgat, M. (1997), ‘Categorial Type Logics’, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, 93-177.
Morrill, G. (1994), Type Logical Grammar, Kluwer, Dordrecht.
Morrill, G. (1998), ‘Incremental processing and acceptability’, Report de recerca, Universitat Politecnica de Catalunia.
Pentus, M. (1993), ‘Lambek grammars are context free’, Proceedings 8th LICS Conference, 429-433.
Pentus, M. (1997), ‘Product-free Lambek calculus and context-free grammars’, Journal of Symbolic Logic 62, 648-660.
Retoré, C. (ed.) (1997), Logical Aspects of Computational Linguistics, First International Conference LACL '96, Lectures Notes in Artificial Intelligence, Springer, Berlin.
Roorda, D. (1991), Resource Logics: proofs theoretical investigations, Ph.D. dissertation, Univ. van Amsterdam.
Yetter, D. N. (1990), ‘Quantales and (non-commutative) linear logic’, Journal of Symbolic Logic 55, 41-64.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Casadio, C., Lambek, J. A Tale of Four Grammars. Studia Logica 71, 315–329 (2002). https://doi.org/10.1023/A:1020564714107
Issue Date:
DOI: https://doi.org/10.1023/A:1020564714107