[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Mucins and mucin binding proteins in colorectal cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mucins are high-molecular weight epithelial glycoproteins with a high content of clustered oligosaccharides O-glycosidically linked to tandem repeat peptides rich in threonine, serine, and proline. There are two structurally and functionally distinct classes of mucins: secreted gel-forming mucins (MUC2, MUC5AC, MUC5B, and MUC6) and transmembrane mucins (MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC17), although the products of some MUC genes do not fit well into either class (MUC7, MUC8, MUC9, MUC13, MUC15, MUC16).

MUC1 mucin, as detected immunologically, is increased in expression in colon cancers, which correlates with a worse prognosis. Expression of MUC2 secreted gel-forming mucin is generally decreased in colorectal adenocarcinoma, but preserved in mucinous carcinomas, a distinct subtype of colon cancer associated with microsatellite instability. Another secreted gel-forming mucin, MUC5AC, a product of normal gastric mucosa, is absent from normal colon, but frequently present in colorectal adenomas and colon cancers.

The O-glycosidically linked oligosaccharides of mucins can be described in terms of core type, backbone type, and peripheral structures. Colon cancer mucins have differences in both core carbohydrates and in peripheral carbohydrate structures that are being investigated as diagnostic and prognostic markers, and also as targets for cancer vaccines. Colon cancer mucins typically have increases in three core structures: Tn antigen (GalNAcαThr/Ser), TF antigen (Galβ3GalNAc) and sialyl Tn (NeuAcα6GalNAc). The type 3 core (GlcNAcβ3GalNAc) predominant in normal colonic mucin is lacking in colon cancer mucins. There are cancer-associated alterations in the peripheral carbohydrates of colonic mucins including a decrease in O-acetyl-sialic acid and a decrease in sulfation. There are, however, cancer-associated increases in sialyl LeX and related structures on mucins and other glycoproteins that can serve as ligands for selectins, increasing the metastatic capacity of colon cancer cells. The endogenous galactoside-binding protein galectin-3, which is expressed at higher levels in colon cancers than normal colon, binds to colon cancer mucin as well as other glycoproteins. Interference of the binding of selectins and galectin-3 to mucin may show therapeutic or preventative promise for colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corfield AP, Carroll D, Myerscough N, Probert CSJ: Mucins in the gastrointestinal tract in health and disease. Frontiers Biosci 6: D1321–1357, 2001

    Google Scholar 

  2. Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK: Structural organization and classification of the human mucin genes. Frontiers Biosci 6: D1192–1206, 2001

    Google Scholar 

  3. Jass JR, Walsh MD: Altered mucin expression in the gastrointestinal tract: A review. Frontiers Gastroenterol 5: 327–351, 2001

    Google Scholar 

  4. Gendler SJ, Spicer AP: Epithelial mucin genes. Annu Rev Physiol 57: 607–634, 1995

    Google Scholar 

  5. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D: Molecular cloningand expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265: 15286–15293, 1990

    Google Scholar 

  6. Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA: Cloningand sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 265: 15294–15299, 1990

    Google Scholar 

  7. Ligtenberg MJ, Vos HL, Gennissen AM, Hilkens J: Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J Biol Chem 265: 5573–5578, 1990

    Google Scholar 

  8. Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DT, Kim YS: Molecular cloningof human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem 264: 6480–6487, 1989

    Google Scholar 

  9. Dekker J, Rossen JWA, Buller HA, Einerhand AWC: The MUC family: An obituary. Trends Bichem Sci 27: 126–131, 2002

    Google Scholar 

  10. Desseyn JL, Buisine MP, Porchet N, Aubert N, Degand P, Laine A: Evolutionary history of the 11p15 Hhuman mucin gene family. J Mol Evol 46: 102–106, 1998

    Google Scholar 

  11. Allen A, Hutton DA, Pearson JP: The MUC2 gene product: A human intestinal mucin. Int J Biochem Cell Biol 7: 797–801, 1998

    Google Scholar 

  12. Schwartz B, Bresalier RS, Kim YS: The role of mucin in colon cancer metastasis. Int J Cancer 52: 60–65, 1992

    Google Scholar 

  13. Sternberg LR, Byrd JC, Yunker CK, Dudas S, Hoon VK, Bresalier RS: Liver colonization by human colon cancer cells is reduced by antisense inhibition of MUC2 mucin synthesis. Gastroenterol 116: 363–371, 1999

    Google Scholar 

  14. Bresalier RS, Niv Y, Byrd JC, Duh QY, Toribara NW, Rockwell RW, Dahiya R, Kim YS: Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Invest 87: 1037–1045, 1991

    Google Scholar 

  15. Van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP: Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front Biosci 6: D1216–1234, 2001

    Google Scholar 

  16. Sylvester PA, Myerscough N, Warren BF, Carlstedt I, Corfield AP, Durdey P, Thomas MG: Differential expression of the chromosome 11 mucin genes in colorectal cancer. J Pathol 195: 327–335, 2001

    Google Scholar 

  17. Bartman AE, Sanderson SJ, Ewing SL, Niehans GA, Wiehr CL, Evans MK, Ho SB: Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps. Int J Cancer 80: 210–218, 1999

    Google Scholar 

  18. Bobek LA, Liu J, Sait SNJ, Shows TB, Bobek YA, Levine MJ: Structure and chromosomal localization of the human salivary mucin gene, MUC7. Genomics 31: 277–282, 1996

    Google Scholar 

  19. Bobek LA, Tsai H, Biesbrock AR, Levine MJ: Molecular cloning, sequence, and specificity of expression of the gene encodingthe low molecular weight human salivary mucin (MUC7). J Biol Chem 268: 20563–20569, 1993

    Google Scholar 

  20. Debailleul V, Laine A, Huet G, Mathon P, d'Hooghe MC, Aubert JP, Porchet N: Human mucin genes MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6 express stable and extremely large mRNAs and exhibit a variable length polymorphism. J Biol Chem 273(2): 881–890, Jan 9, 1998

    Google Scholar 

  21. Lapensee L, Paquette Y, Bleau G: Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil Steril 68: 702–708, 1997

    Google Scholar 

  22. von Mensdorff-Pouilly S, Snijdewint FGM, Verstraeten AA, Verheijen RHM, Kenemans P: Human MUC1 mucin: A multifaceted glycoprotein. Int J Biol Markers 15: 343–356, 2000

    Google Scholar 

  23. Hanisch FG, Muller S: MUC1: The polymorphic appearance of a human mucin. Glycobiol 10: 439–449, 2000

    Google Scholar 

  24. Irimura T, Denda K, Iida SI, Takeuchi H, Kato K: Diverse glycosylation of MUC1 and MUC2: Potential significance in tumor immunity. J Biochem 126: 975–985, 1999

    Google Scholar 

  25. Jerome KR, Barud DL, Bendt KM, Boyer CM, Taylor-Papadimitrou J, McKenzie IFC, Bast RC, Finn OJ: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 51: 2908–2916, 1991

    Google Scholar 

  26. Wreschner DH, McGuckin MA, Williams SJ, Baruch A, Yoeli M, Ziv R, Okun L, Zaretsky J, Smorodinsky N, Keydar I, Neophtou P, Stacey M, Lin HH, Gordon S: Generation of ligand-receptor alliances by 'SEA' module-mediated cleavage of membrane-associated mucin proteins. Protein Sci 11: 698–706, 2002

    Google Scholar 

  27. Hartman M, Baruch A, Ron I, Aderet Y, Yoeli M, Sagi-Assif O, Greenstein S, Stadler Y, Weiss M, Harness E, Yaakubovits M, Keydar I, Smorodinsky NI, Wreschner DH: MUC1 isoform specific monoclonal antibody 6E6/2 detects preferential expression of the novel MUC1/Y protein in breast and ovarian cancer. Int J Cancer 82: 256–267, 1999

    Google Scholar 

  28. Choudry A, Moniaux JP, Winpenny MA, Hollingsworth JP, Batra SK: Human MUC4 xDNA and its variants in pancreatic carccinoma. J Biochem 128: 233–243, 2000

    Google Scholar 

  29. Komatsu M, Tatum L, Altman NH, Carraway CAC, Carraway KL: Potentiation of metastasis by cell surface sialomucin complex (rat Muc4), a multifunctional antiadhesive glycoprotein. Int J Cancer 87: 480–486, 2000

    Google Scholar 

  30. Carraway KL III, Rossi EA, Komatsu M, Price-Schiavi SA, Huand D, Guy PM, Carvajal ME, Friegien N, Carraway CAC, Carraway KL: An intramembrane modulator of the ErbB2 receptor tyrosine kinase that potentiates neuregulin signaling. J Biol Chem 274: 5236–5266, 1999

    Google Scholar 

  31. Gum JR, Crawley SC, Hicks JW, Szymkowski DE, Kim YS: MUC17, a novel membrane-tethered mucin. Biochem Biophys Res Commun 291: 466–475, 2002

    Google Scholar 

  32. Gum JR, Hicks JW, Swallow DM, Lagace RL, Byrd JC, Lamport DT, Siddiki B, Kim YS: Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun 171: 407–401, 1990

    Google Scholar 

  33. Pratt WS, Crawley S, Hicks J, Ho J, Nash M, Kim YS, Gum JR, Swallow DM: Multiple transcripts of MUC3: Evidence for two genes, MUC3A and MUC3B. Biochem Biophys Res Commun 275: 916–923, 2000

    Google Scholar 

  34. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA: Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducingintestinal mucin gene expression. Am J Physiol 276: G941–950, 1999

    Google Scholar 

  35. Larson MA, Wei SH, Weber DR, McDonald TL: Human serum amyloid A3 peptide enhances intestinal MUC3 expression and inhibits EPEC adherence. Biochem Biophys Res Commun 300: 531–540, 2003

    Google Scholar 

  36. Williams SJ, McGuckin MA, Gotley DC, Eyre HJ, Sutherland GR, Antalis TM: Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res 59: 4083–4089, 1999

    Google Scholar 

  37. Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA: MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem 276: 18327–18336, 2001

    Google Scholar 

  38. Pallesen LT, Berglund L, Rasmussen LK, Petersen TE, Rasmussen JT: Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur J Biochem 269: 2755–2763, 2002

    Google Scholar 

  39. Yin BW, Lloyd KO: Molecular cloningof the CA125 ovarian cancer antigen: Identification as a new mucin, MUC16. J Biol Chem 276: 27371–27375, 2001

    Google Scholar 

  40. Cao Y, Blohm D, Ghadimi M, Stosiek P, Xing PX, Karsten U: Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelial reveal different and heterogeneous tumor-associated aberrations in glycosylation. J Histochem Cytochem 45: 1547–1557, 1997

    Google Scholar 

  41. Ajioka Y, Allison LJ, Jass JR: Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J Clin Pathol 49: 560–564, 1996

    Google Scholar 

  42. Nakomori S, Ota DM, Cleary KR, Shirotani K, Irimura T: MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterol106: 353–361, 1994

    Google Scholar 

  43. Matsuda K, Masaki T, Watanabe T, Kitayama J, Nagawa H, Muto T, Ajioka Y: Clinical significance of MUC1 and MUC2 mucin and p53 protein expression in colorectal carcinoma. Jpn J Clin Oncol 30: 89–94, 2000

    Google Scholar 

  44. Manne U, Weiss HL, Grizzle WE: Racial differences in the prognostic usefulness of MUC1 and MUC2 in colorectal adenocarcinomas. Clin Cancer Res 6: 4017–4025, 2000

    Google Scholar 

  45. Baldus SE, Monig SP, Hanisch FG, Zirbes TK, Flucke U, Oelert S, Zilkens G, Madejczik B, Thiele J, Schneider PM, Holscher AH, Dienes HP: Comparative evaluation of the prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x) antigens in colorectal adenocarcinoma. Histopathol 40: 440–449, 2002

    Google Scholar 

  46. Lloyd KO, Burchell J, Kudryashov V, Yin BWT, Taylor-Papadimitrou J: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J Biol Chem 271: 33325–33334, 1996

    Google Scholar 

  47. von Mensdorff-Pouilly S, Snijdewint FGM, Verstraeten AA, Verheijen RHM, Kenemans P: Human MUC1 mucin: A multifaceted glycoprotein. Int J Biol Markers 15: 343–356, 2000

    Google Scholar 

  48. Carraway KL, Ramsauer VP, Haq B, Carraway CAC: Cell signaling through membrane mucins. Bioessays 25: 66–71, 2002

    Google Scholar 

  49. Ogata S, Uehara H, Chen A, Itzkowitz SH: Mucin gene expression in colonic tissues and cell lines. Cancer Res52: 5971–5978, 1992

    Google Scholar 

  50. Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET, Dahiya R, Kim YS: Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 53: 641–651, 1993

    Google Scholar 

  51. Cao Y, Schlag PM, Karsten U: Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, sialosyl-Tn) in benign and malignant lesions of colonic epithelium: Apolar localization corresponds to malignant transformation. Virchows Arch 431: 159–166, 1997

    Google Scholar 

  52. Velcich A, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L: Colorectal cancer in mice genetically deficient in the mucin MUC2. Science 295: 1726–1729, 2002

    Google Scholar 

  53. Chang SK, Dohrman AF, Basbaum CB, Ho SB, Tsuda T, Toribara NW, Gum JR, Kim YS: Localisation of mucin (MUC2 and MUC3) mRNA and peptide expression in normal human intestine and colon cancer. Gastroenterol107: 160–172, 1994

    Google Scholar 

  54. Weiss AA, Babyatsky MW, Ogata S, Chen A, Itzkowitz SH: Expression of MUC2 and MUC3 mRNA in human normal, malignant and inflammatory tissues. J Histochem Cytochem 44: 1161–1166, 1996

    Google Scholar 

  55. Blank M, Klussman E, Kruger-Krasagakes S, Schmitt-Graff A, Stolte M, Bornhoeft G, Stein H, Xing PX, McKenzie IFC, Verstijnen CPHJ, Riecken EO, Hanski CJ: Expression of MUC2-mucin in colorectal adenomas and carcinomas of different histological types. Int J Cancer59: 301–306, 1994

    Google Scholar 

  56. Biemer-Huttmann AE, Walsh MD, McGuckin MA, Simms LA, Young J, Leggett BA, Jass JR: Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin Cancer Res 6: 1909–1916, 2000

    Google Scholar 

  57. Hanski C, Riede E, Gratchev A, Foss HD, Bohm C, Klussman E, Hummel M, Mann B, Buhr HJ, Stein H, Kim YS, Gum J, Riecken EO: MUC2 gene suppression in human colorectal carcinomas and their metastases: in vitro evidence of the modulatory role of DNA methylation. Lab Invest 77: 685–695, 1997

    Google Scholar 

  58. Gratchev A, Siedow A, Bumke-Vogt C, Hummel M, Foss HD, Hanski ML, Kobalz U, Mann B, Lammert H, Stein H, Riecken EO, Hanski C, Mansmann U: Regulation of the intestinal mucin MUC2 gene expression in vivo: Evidence for the role of promoter methylation. Cancer Lett168: 71–80, 2001

    Google Scholar 

  59. Ookawa K, Kudo T, Aizawa S, Saito H, Tsuchida S: Transcriptional activation of the MUC2 gene by p53. J Biol Chem 277: 48270–48275, 2002

    Google Scholar 

  60. Campo E, Calle-Martin O, Miquel R, Palacin A, Romero M, Fabregat V, Vives J, Cardesa A, Yague J: Loss of heterozygosity of p53 gene and p53 protein expression in human colorectal carcinoma. Cancer Res 51: 4436–4442, 1991

    Google Scholar 

  61. Byrd JC, Yan P, Sternberg L, Yunker CK, Scheiman JM, Bresalier RS: Aberrant expression of gland-type mucin in the surface epithelium of H. pylori-infected patients. Gastroenterol 113: 455–464, 1997

    Google Scholar 

  62. Ho SB, Roberton AM, Shekels LL, Lyftogt CT, Niehans GA, Toribara NW: Expression cloningof gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterol 109: 735–747, 1995

    Google Scholar 

  63. Byrd JC, Sternberg L, Yan P, Ho SB, Bresalier RS: Ectopic expression of MUC5 gastric mucin in colorectal adenocarcinoma. Gastroenterol 114: A573, 1998

    Google Scholar 

  64. Bartman AE, Sanderson SJ, Ewing SL, Niehans GA, Wiehr CL, Evans MK, Ho SB: Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps. Int J Cancer 80: 210–218, 1999

    Google Scholar 

  65. Biemer-Huttmann AE, Walsh MD, McGuckin MA, Ajioka Y, Watanabe H, Leggett BA, Jass JR: Immunohistochemical stainingpatterns of MUC1, MUC2, MUC4, and MUC5AC mucins in hyperplastic polyps, serrated adenomas, and traditional adenomas of the colorectum. J Histochem Cytochem 47: 1039–1048, 1999

    Google Scholar 

  66. Buisine MP, Janin A, Maunoury V, Audie JP, Delescaut MP, Copin MC, Colombel JF, Degand P, Aubert JP, Porchet N: Aberrant expression of a human mucin gene (MUC5AC) in rectosigmoid villous adenoma. Gastroenterol 110: 84–91, 1996

    Google Scholar 

  67. Longman RJ, Douthwaite J, Sylvester PA, O'Leary D, Warren BF, Corfield AP, Thomas MG: Lack of mucin MUC5AC field change expression associated with tubulovillous and villous colorectal adenomas. J Clin Pathol 53: 100–104, 2000

    Google Scholar 

  68. Yu CJ, Yang PC, Shun CT, Lee YC, Kuo SH, Luh KT: Overexpression of MUC5 genes is associated with early post-operative metastasis in non-small-cell lungcancer. Int J Cancer 69: 457–465, 1996

    Google Scholar 

  69. Kocer B, Soran A, Erdogan S, Karabeyoglu M, Yildirim O, Eroglu A, Bozkurt B, Cengiz O: Expression of MUC5AC in colorectal carcinoma and relationship with prognosis. Pathol Int 52: 470–477, 2002

    Google Scholar 

  70. Baldus SE, Hanisch FG, Kotlarek GM, Zirbes TK, Thiele J, Isenberg J, Karsten UR, Devine PL, Dienes HP: Coexpression of MUC1 mucin peptide core and the Thomsen-Friedenrieich antigen in colorectal neoplasms. Cancer 82: 1019–1027, 1998

    Google Scholar 

  71. Sadahiro S, Ohmura T, Saito T, Akatsuka S: An assessment of the mucous component in carcinoma of the colon and rectum. Cancer 64: 1113–1116, 1989

    Google Scholar 

  72. Nozoe T, Anai H, Nasu S, Sugimachi K: Clinicopathological characteristics of mucinous carcinoma of the colon and rectum. J SurgOncol75: 103–107, 2000

    Google Scholar 

  73. Adell R, Marcote E, Segarra MA, Pellicer V, Gamon R, Bayon AM, Canales M, Torner A: Is mucinous colorectal adenocarcinoma a distinct entity? Gastroenterol Hepatol 25: 534–540, 2002

    Google Scholar 

  74. Secco GB, Fardelli R, Campora E, Lapertosa G, Gentile R, Zoli S, Prior C: Primary mucinous adenocarcinomas and signet-ring cell carcinomas of colon and rectum. Oncol 51: 30–34, 1994

    Google Scholar 

  75. Okuno M, Ikehara T, Nagayama M, Kato Y, Yui S, Umeyama K: Mucinous colorectal carcinoma: Clinical pathology and prognosis. Am J Surg 54: 681–685, 1988

    Google Scholar 

  76. Halverson TB, Seim E: Influence of mucinous components on survival in colorectal adenocarcinomas: A multivariate analysis. J Clin Pathol 41: 1068–1072, 1988

    Google Scholar 

  77. Consorti F, Lorenzotti A, Midiri G, Di Paola M: Prognostic significance of mucinous carcinoma of colon and rectum: A prospective case-control study. J Surg Oncol 73: 70–74, 2000

    Google Scholar 

  78. Symonds DA, Vickery AL: Mucinous carcinoma of the colon and rectum. Cancer 37: 1891–1900, 1976

    Google Scholar 

  79. Green JB, Timmcke AE, Mitchell WT, Hicks TC, Gathright JB, Ray JE: Dis Colon Rectum 36: 49–54, 1993

    Google Scholar 

  80. Suma KS, Nirmala V: Mucinous component in colorectal carcinoma-prognostic significance: A study in a south Indian population. J SurgOncol 51: 60–64, 1992

    Google Scholar 

  81. Yamamoto S, Mochizuki H, Hase K, Yamamoto T, Ohkusa Y, Yokoyama S, Ushitani Y, Tamakuma S: Assessment of clinicopathological features of colorectal mucinous adenocarcinoma. Am J Surg 166: 257–261, 1993

    Google Scholar 

  82. Wu CS, Tung SY, Chen PC, Kuo YC: Clinicopathological study of colorectal mucinous carcinoma in Taiwan: A multivariate study. J Gastroenterol Hepatol 11: 77–81, 1996

    Google Scholar 

  83. ZhangH, Evertsson S, Sun X: Clinicopathological and genetic characteristics of mucinous carcinomas in the colorectum. Int J Oncol 14: 1057–1061, 1999

    Google Scholar 

  84. Enriquez JM, Diez M, Tobaruela E, Lozano O, Dominguez P, Gonzalez A, Muguerza JM, Ratia T: Clinical, histopathological, cytogenetic and prognostic differences between mucinous and nonmucinous colorectal adenocarcinoma. Rev Esp Enferm Dig 90: 563–572, 1998

    Google Scholar 

  85. Messerini L, Vitelli F, De Vitis LR, Mori S, Calzolari A, Palmirotta R, Calabro A, Papi L: Microsatellite instability in sporadic mucinous colorectal carcinomas: Relationship to clinico-pathological variables. J Pathol 182: 380–384, 1997

    Google Scholar 

  86. Ward R, Meagher A, Tomlinson I, O'Connor T, Norrie M, Wu RH: Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 48: 821–829, 2001

    Google Scholar 

  87. Chao A, Gilliland F, Willman C, Joste N, Chen IM, Stone N, Ruschulte J, Viswanatha D, Duncan P, Ming R, Hoffman R, Foucar E, Key C: Patient and tumor characteristics of colon cancers with microsatellite instability: A population-based study. Cancer Epidemiol Biomarkers Prevent 9: 539–544, 2000

    Google Scholar 

  88. Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR: Histopathological identification of colon cancer with microsatellite instability. Am J Pathol 158: 527–535, 2001

    Google Scholar 

  89. Bocker T, Schegel J, Kullmann F, Stumm G, Zirngibl H, Epplen JT, Ruschoff J: Genomic instability in colorectal carcinomas: Comparison of different evaluation methods and their biological significance. J Pathol 179: 15–19, 1999

    Google Scholar 

  90. Brockhausen I: Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473: 67–95, 1999

    Google Scholar 

  91. Hanisch FG: O-glycosylation of the mucin type. Biol Chem 382: 143–149, 2001

    Google Scholar 

  92. Podolsky DK: Oligosaccharide structures of human colonic mucin. J Biol Chem 260: 8262–8271, 1985

    Google Scholar 

  93. Podolsky DK: Oligosaccharide structures of isolated human colonic mucin species. J Biol Chem 260: 15510–15515, 1985

    Google Scholar 

  94. Capon C, Maes E, Michalski JC, Leffler H, Kim YS: Sda-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descendingcolon. Biochem J 358: 657–664, 2001

    Google Scholar 

  95. Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH: Different modes of sialyl-Tn expression duringmalig nant transformation of human colonic mucosa. Glycoconj J 15: 29–35, 1998

    Google Scholar 

  96. Mann B, Klussmann E, Vandamme-Feldhaus V, Iwersen M, Hanski ML, Riecken EO, Buhr HJ, Schauer R, Kim YS, Hanski C: Low O-acetylation of sialyl-Le(x) contributes to its overexpression in colon carcinoma metastases. Int J Cancer 72: 258–264, 1997

    Google Scholar 

  97. Boland CR, Deshmukh GD: The carbohydrate composition of mucin in colonic cancer. Gastroenterol 98: 1170–1177, 1990

    Google Scholar 

  98. Capon C, Laboisse CL, Wieruszeski JM, Maoret JJ, Augeron C, Fournet B: Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL.16E. J Biol Chem 267: 19248–19257, 1992

    Google Scholar 

  99. Capon C, Wieruszeski JM, Lemoine J, Byrd JC, Leffler H, Kim YS: Sulfated Lewis X detrminants as a major structural motif in glycans from LS174T-HM7 human colon carcinoma mucin. J Biol Chem 272: 31957–31968, 1997

    Google Scholar 

  100. Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS: Expression of Tn, Sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 49: 197–204, 1989

    Google Scholar 

  101. Inoue M, Yamashina I, Nakada H: Glycosylation of the tandem repeat unit of the MUC2 polypeptide leading to the synthesis of the Tn antigen. Biochem Biophys Res Commun 245: 23–27, 1998

    Google Scholar 

  102. ZhangY, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng L, Inaba N, Gotoh M, Togayachi A, Guo J, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H: Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alphaserine/ threonine antigen. J Biol Chem 278: 573–584, 2003

    Google Scholar 

  103. Takeuchi H, Kato K, Hassan H, Clausen H, Irimura T: O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. Eur J Biochem269: 6173–6183, 2002

    Google Scholar 

  104. Boland CR, Montgomery CK, Kim YS: Alterations in human colonic mucin occuringwith cellular differentiation and malignant transformation. Proc Nat Acad Sci USA 79: 2051–2055, 1982

    Google Scholar 

  105. Yuan M, Itzkowitz SH, Boland CR, Kim YD, Tomita JT, Palekar A, Bennington JL, Trump BF, Kim YS: Comparison of T-antigen expression in normal, premalignant, and malignant human colonic tissue using lectin and antibody immunohistochemistry. Cancer Res 46: 4841-4847

  106. Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH, Brodt P, Byrd JC: Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110: 1354–1367, 1996

    Google Scholar 

  107. Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH, Brodt P, Byrd JC: Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110: 1354–1367, 1996

    Google Scholar 

  108. Samuel J, Noujaim AA, Maclean GD, Suresh MR, Longenecker BM: Analysis of human tumor associated Thomsen-Friedenreich antigen. Cancer Res 50: 4801–4808, 1990

    Google Scholar 

  109. Said IT, Shamsuddin AM, Sherief MA, Taleb SG, Aref WF, Kumar D: Comparison of different techniques for detection of Gal-GalNAc, an early marker of colonic neoplasia. Histol Histopathol 14: 351–357, 1999

    Google Scholar 

  110. Yu LG, Milton JD, Ferning DG, Rhodes JM: Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Freidenreich antigen-binding lectins. J Cell Physiolo 186: 282–287, 2001

    Google Scholar 

  111. Campbell BJ, Finnie IA, Hounsell EF, Rhodes JM: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest 95: 571–576, 1995

    Google Scholar 

  112. Yang JM, Byrd JC, Siddiki BB, Chung YS, Okuno M, Sowa M, Kim YS, Matta KL, Brockhausen I: Glycobiol 4: 873–884, 1994

    Google Scholar 

  113. Brockhausen I, YangJ, Lehotay M, Ogata S, Itzkowitz S: Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem 382: 219–232, 2001

    Google Scholar 

  114. Itzkowitz SH, Bloom EJ, Kokal WA, Modin G, Hakomori S, Kim YS: Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer66: 1960–1966, 1990

    Google Scholar 

  115. O'Boyle KP, Zamore R, Adluri S, Cohen A, Kemeny N, Welt S, Lloyd KO, Oettgen HF, Old LJ, Livingston PO: Immunization of colorectal cancer patients with modified ovine submaxillary gland mucin and adjuvants induces IgM and IgG antibodies to sialylated Tn. Cancer Res 52: 5663–5667, 1992

    Google Scholar 

  116. Zhang S, Walberg LA, Ogata S, Itzkowitz SH, Koganty RR, Reddish M, Gandhi SS, Longenecker BM, Lloyd KO, Livingston PO: Immune sera and monoclonal antibodies define two configurations for the sialyl Tn tumor antigen. Cancer Res 55: 3364–3368, 1995

    Google Scholar 

  117. Nakagoe T, Sawai T, Tsuji T, Jibiki M, Nanashima A, Yamaguchi H, Kurosaki N, Yasutake T, Ayabe H: Circulatingsialyl Lewis(x), sialyl Lewis(a), and sialyl Tn antigens in colorectal cancer patients: Multivariate analysis of predictive factors for serum antigen levels. J Gastroenterol 36: 166–172, 2001

    Google Scholar 

  118. Itzkowitz SH, YoungE, Dubois D, Harpaz N, Bodian C, Chen A, Sachar DB: Sialosyl-Tn is prevalent and precedes dysplasia in ulcerative colitis: A retrospective case-control study. Gastroenterol 110: 694–704, 1996

    Google Scholar 

  119. Pant KD, McCracken JD: Noninvasive colorectal cancer screening. Dig Dis Sci 47: 1236–1240, 2002

    Google Scholar 

  120. Wang F, Goto M, Kim YS, Higashi M, Imai K, Sato E, Yonezawa S: Altered GalNAc-alpha-2, 6-sialylation compartments for mucin-associated sialyl-Tn antigen in colorectal adenoma and adenocarcinoma. J Histochem Cytochem 49: 1581–1592, 2001

    Google Scholar 

  121. Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH: Different modes of sialyl-Tn expression duringmalig nant transformation of human colonic mucosa. Glycoconj J 15: 29–35, 1998

    Google Scholar 

  122. Brinkman-Van der Linden EC, Varki A: New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. J Biol Chem275: 8625–8632, 2000

    Google Scholar 

  123. Cebo C, Dambrouck T, Maes E, Laden C, Strecker G, Michalski JC, Zanetta JP: Recombinant human interleukins IL-1alpha, IL-1beta, IL-4, IL-6, and IL-7 show different and specific calcium-independent carbohydrate-binding properties. J Biol Chem 276: 5685–5691, 2001

    Google Scholar 

  124. Irimura T, Wynn DM, Hager LG, Cleary KR, Ota DM: Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res 51: 5728–5735, 1991

    Google Scholar 

  125. Seko A, Nagata K, Yonezawa S, Yamashita K: Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn J Cancer Res93: 507–515, 2002

    Google Scholar 

  126. Aksoy N, Corfield AP, Sheehan JK: Preliminary study pointingout a significant alteration in the biochemical composition of MUC2 in colorectal mucinous carcinoma. Clin Biochem33: 167–173, 2000

    Google Scholar 

  127. Tsuiji H, Hayashi M, Wynn DM, Irimura T: Expression of mucin-associated sulfo-Lea carbohydrate epitopes on human colon carcinoma cells. Jpn J Cancer Res 189: 1267–1275, 1998

    Google Scholar 

  128. Tsuiji H, Nakatsugawa S, Ishigaki T, Irimura T: Malignant and other properties of human colon carcinoma cells after suppression of sulfomucin production in vitro. Clin Exp Metastasis 17: 97–104, 1999

    Google Scholar 

  129. Reid PE, Culling CF, Dunn WL, Ramey CW, Clay MG: Chemical and histochemical studies of normal and diseased human gastrointestinal tract. I. A comparison between histologically normal colon, colonic tumors, ulcerative colitis and diverticular disease of the colon. Histochem J 16: 235–251, 1984

    Google Scholar 

  130. Harms G, Reuter G, Corfield AP, Schauer R: Binding specificity of influenza C-virus to variably O-acetylated glycoconjugates and its use for histochemical detection of N-acetyl-9-O-acetylneuraminic acid in mammalian tissues. Glycoconj J 13: 621–630, 1996

    Google Scholar 

  131. Corfield AP, Myerscough N, Warren BF, Durdey P, Paraskeva C, Schauer R: Reduction of sialic acid O-acetylation in human colonic mucins in the adenomacarcinoma sequence. Glycoconj J 16: 307–317, 1999

    Google Scholar 

  132. Saez C, Japon MA, Poveda MA, Segura DI: Mucinous (colloid) adenocarcinomas secreted distinct O-acylated forms of sialomucins: A histochemical study of gastric, colorectal and breast adenocarcinomas. Histopathol 39: 554–560, 2001

    Google Scholar 

  133. Jass JR, Allison LJ, Edgar SG: Distribution of sialosyl-Tn and Tn antigens within normal and malignant colorectal epithelium. J Pathol 176: 143–149, 1995

    Google Scholar 

  134. Lloyd KO: The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: Past present and future. Glycoconjugate J 17: 531–541, 2000

    Google Scholar 

  135. Hanski C, Dreschsler K, Hanisch FG, Sheehan J, Manske M, Ogorek D, Klussman E, Hanski ML, Blank M, Xing PX, McKenzie IFC, Devine PL, Riecken EO: Altered glycosylation of the MUC-1 protein core contributes to the colon carcinoma-associated increase of mucin-bound sialyl-Lewis(x) expression. Cancer Res 53: 4082–4088, 1993

    Google Scholar 

  136. Hanski C, Hanski ML, Zimmer T, Ogorek D, Devine P, Riecken EO: Characterization of the major sialyl-Lexpositive mucins present in colon, colon carcinoma and sera of patients with colorectal cancer. Cancer Res 55: 928–933, 1995

    Google Scholar 

  137. Hoff SD, Matsushita Y, Ota DM, Cleary KR, Yamori T, Hakomori S, Irimura T: Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. Cancer Res 49: 6883–6888, 1989

    Google Scholar 

  138. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Iwanaga T, Matsushita Y, Irimura T: Increased expression of Sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinical and immunohistochemical study. Cancer Res 53: 3632–3637, 1993

    Google Scholar 

  139. Giavazzi R, Foppolo M, Dossi R, Remuzzi A: Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92: 3038–3044, 1993

    Google Scholar 

  140. Kim YJ, Borsig L, Han HL, Varki NM, Varki A: Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol 155: 461–472, 1999

    Google Scholar 

  141. Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqulini R, Ruoslahti E, Fukuda M: A peptide mimic of E-selectin ligand inhibits Lewis X-dependent lung colonization of tumor cells. Cancer Res 60: 450–456, 2000

    Google Scholar 

  142. Shirota K, Kato Y, Irimura T, Kondo H, Sugiyama Y: Anti-metastatic effect of the sialyl Lewis-X analog GSC-150 on the human colon carcinoma derived cell line KM12-HX in the mouse. Biol Pharm Bull 24: 316–319, 2001

    Google Scholar 

  143. Cooper DNW: Galectinomics: Finding themes in complexity. Biochim Biophys Acta 1572: 209–231, 2002

    Google Scholar 

  144. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS: Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem 275: 36311–36315, 2000

    Google Scholar 

  145. Schoeppner HL, Raz A, Ho SB, Bresalier RS: Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer 75: 2818–2826, 1995

    Google Scholar 

  146. Raz A, Lotan R: Endogenous galactoside-binding lectins:A new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6: 433–452, 1987

    Google Scholar 

  147. Bresalier RS, Byrd JC, Wang L, Raz A: Colon cancer mucin: a new ligand for the beta-galactoside-binding protein galectin-3. Cancer Res 56: 4354–4357, 1996

    Google Scholar 

  148. Dudas SP, Yunker CK, Sternberg LR, Byrd JC, Bresalier RS: Expression of human intestinal mucin is modulated by the beta-galactoside binding protein galectin-3 in colon cancer. Gastroenterol 123: 817–826, 2002

    Google Scholar 

  149. Inohara H, Raz A: Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconj J 11: 527–532, 1994

    Google Scholar 

  150. Platt D, Raz A: Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin. J Natl Cancer Inst 84: 438–442, 1992

    Google Scholar 

  151. Pienta KJ, Naik H, Akhtar A, Yamazaki K, Replogle TS, Lehr J, Donat TL, Tait L, Hogan V, Raz A: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst 87: 348–353, 1995

    Google Scholar 

  152. Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94: 1854–1862, 2002

    Google Scholar 

  153. Shankar V, Gilmore MS, Elkins RC, Sachdev GP: A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem J 300: 295–298, 1994

    Google Scholar 

  154. Bresalier RS, Mazurek N, Sternberg LR, Byrd JC, Yunker CK, Nangia-Makker P, Raz A: Metastasis of human colon cancer is altered by modifyingexpression of the beta-galactoside-binding protein galectin 3. Gastroenterol 115: 287–296, 1998

    Google Scholar 

  155. Sternberg LR, Yunker CK, Bresalier RS: The human MUC2 gene encodes multiple mRNA transcripts. Gastroenterol 118: A283, 2000

    Google Scholar 

  156. Bresalier RS, Holt P: Neoplasia-associated expression of MUC5AC mucin is reduced in adenomas by treatment with calcium and vitamin D. Gastroenterol 122: A71, 2002

    Google Scholar 

  157. Brodt P, Fallavollita L, Bresalier RS, Meterissian S, Norton CR, Wolitzky BA: Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71: 612–619, 1997

    Google Scholar 

  158. Tomasetto C, Masson R, Linares JL, Wendling C, Lefebvre O, Chenard MP, Rio MC: PS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterol 118: 70–80, 2000

    Google Scholar 

  159. Cebo C, Vergoten G, Zanetta JP: Lectin activities of cytokines: functions and putative carbhydrate-recognition domains. Biochim Biophys Acta 1572: 422–434, 2002

    Google Scholar 

  160. Lahm H, Andre S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ: Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127: 375–386, 2001

    Google Scholar 

  161. Lotz MM, Andrews CW, Korzelius CA, Lee EC, Steele, Clarke A, Mercurio AM: Decreased expression of Mac-2 (carbohydrate bindingprotein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci USA90: 3466–3470, 1993

    Google Scholar 

  162. Sanjuan X, Fernandez PL, Castells A, Castronovo V, van den Brule FA, Liu FT, Cardesa A, Campo E: Differential expression of galectin-3 and galectin-1 in colorectal cancer progression. Gastroenterol 113: 1906–1915, 1997

    Google Scholar 

  163. Irimura T, Matsushita Y, Sutton RC, Carralero D, Ohannesian DW, Cleary KR, Ota DM, Nicolson GL, Lotan R: Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stages. Cancer Res 51: 387–393, 1991

    Google Scholar 

  164. Hittelet A, Legendre H, Nagy N, Bronckart Y, Pector JC, Salmon I, Yeaton P, Gabius HJ, Kiss R, Camby I: Upregulation of galectins-1 and-3 in human colon cancer and their role in regulating cell migration. Int J Cancer 103: 370–379, 2003

    Google Scholar 

  165. Inufusa H, Nakamura M, Adachi T, Aga M, Kurimoto M, Nakatani Y, Wakano T, Miyake M, Okuno K, Shiozaki H, Yasutomi M: Role of galectin-3 in adenocarcinoma liver metastasis. Int J Oncol 19: 913–919, 2001

    Google Scholar 

  166. Lurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S: Concentration of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6: 1389–1393, 2000

    Google Scholar 

  167. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule V, Castonovo V, Wattiaux R, Wattiaux-DeConinck S: Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer 75: 105-111

  168. Inohara H, Raz A: Identification of human cellular and secreted ligands for galectin-3. Biochem Biophys Res Commun 201: 1366–1375, 1994

    Google Scholar 

  169. Ohhannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R: Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res 55: 2191–2199, 1995

    Google Scholar 

  170. Koths K, Taylor E, Halenbeck R, Casipit C, Wang A: Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem268: 14245–14249, 1993

    Google Scholar 

  171. Par JW, Voss PG, Grabski S, Wang JL, Patterson RJ: Association of galectin-1 and galectin-3 with Gemin4 in complexes containingthe SMN protein. Nucl Acids Res 27: 3595-3602

  172. Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q: Induction of terminal differentiation in Epithelial cells requires polymerization of hensin by galectin-3. J Cell Biol 151: 1235–1246, 2000

    Google Scholar 

  173. Frigeri LG, Liu FT: Surface expression of functional IgE binding protein, an enogenous lectin, on mast cells and macrophages. J Immunol 148: 861–867, 1992

    Google Scholar 

  174. Cortegano I, del Pozo V, Cardaba B, Arrieta I, Gallardo S, Rojo M, Aceituno E, Takai T, Verbeek S, Palomino P, Liu FT, Lahoz C: Interaction between galectin-3 and FcgRII induces down-regulation of IL-5 gene: Implication of the promoter sequence IL-5REIII. Glycobiol 10: 237–242, 2000

    Google Scholar 

  175. Crider-Pirkle S, Billingsley P, Faust C, Hardy DM, Lee V, Weitlauf H: Cubulin, a bindingpartner for galectin-3 in the murine utero-placental complex. J Biol Chem277: 15904–15912, 2002

    Google Scholar 

  176. Henrick K, Bawumia S, Barboni EAM, Mehul B, Hughes RC: Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: Sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiol 8: 45–47, 1998

    Google Scholar 

  177. Ideo H, Seko A, Ohkura T, Matta KL, Yamashita K: High-affinity binding of recombinant human galectin-4 to SO3?3Galβ?GalNAc pyranoside. Glycobiol 12: 199–208, 2002

    Google Scholar 

  178. Goletz S, Hanisch FG, Karsten U: Novel aGalNAc containing glycans on cytokeratins are recognized in vitro by galectins with type II carbohydrate recognition domains. J Cell Sci 110: 1585–1596, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Byrd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, J.C., Bresalier, R.S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23, 77–99 (2004). https://doi.org/10.1023/A:1025815113599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025815113599

Navigation