Abstract
This document is an attempt at introducing the different “Eulerian” numerical methods which have recently been developed for the simulation of geometric optics and related models.
Similar content being viewed by others
References
Abgrall, R. (1996). Numerical discretization of first order Hamilton–Jacobi equations on triangular meshes. Comm. Pure Appl. Math. 49, 1339-1373.
Abgrall, R. Numerical approximation of boundary conditions for Hamilton–Jacobi equations. Siam J. Numer. Anal., in revision.
Abgrall, R., and Augoula, S. (2000). High resolution schemes for first order Hamilton–Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197-229.
Abgrall, R., and Benamou, J.-D. (1999). Big ray tracing and Eikonal solver on unstructured grids: Application to the computation of a multi-valued travel-time field in the marmousi model. Geophysics 64, 230-239.
Arnol'd, V. I. (1978). Mathematical Methods of Classical Mechanics, Springer-Verlag.
Arnol'd, V. I. (1992). Catastrophe Theory, Springer-Verlag.
Arnol'd, V. I., Gusein-Zade, S. M., and Varchenko, A. N. (1986). Singularities of Differential Maps, Birkhäuser.
Bardos, C., Lebeau G., and Rausch, M. (1992). Sharp sufficient conditions for the observability, control and stabilization of waves from the boundary. SIAM J. Cont Optim. 30, 1024-1065.
Barles, G. (1994). Solutions de viscosité des équations de Hamilton–Jacobi, Collection Math. Appliquées, Springer-Verlag.
Benamou, J.-D. (2002). Eulerian Geometrical Optics, ESAIM Proc., to appear.
Benamou, J.-D. (1999). Direct solution of multi-valued phase-space solutions for Hamilton–Jacobi equations. Comm. Pure Appl. Math. 52, 1443-1475.
Benamou, J.-D. (1999). Equations “géométriques” pour les calcul d'amplitudes d'ondes haute fréquence, preprint, http://www-rocq.inria.fr/~benamou.
Benamou, J.-D., and Solliec, I. (2000). An eulerian method for capturing caustics. J. Comput. Phys. 162, 132-163.
Benamou, J.-D., Lafitte, O., Sentis, R., and Solliec, I. (2002). A geometric optics method for high frequency electromagnetic field computations near fold caustics—Part I, preprint, http://www-rocq.inria.fr/~benamou.
Benamou, J.-D., Lafitte, O., Sentis, R., and Solliec, I. (2002). A geometric optics method for high frequency electromagnetic fields computations near fold caustics—Part II, preprint, http://www-rocq.inria.fr/~benamou.
Benamou, J.-D., Castella, F., Katsaounis, T., and Perthame, B. (2002). High frequency limit of the Helmholtz equation. Rev. Mat. Iberoamericana 18, 187-209.
Berry, M. (1992). Rays, wavefronts and phase: A picture book of cusps. In Kuiken, H. K., Blok, H., and Fewerda, H. A. (eds.), Huygens' Principle 1690–1990: Theory and Applications, Elsevier.
Beylkin, G. (1985). Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform. J. Math. Phys. 26, 99-108.
Bleistein, N., and Gray, S. H. (1985). An extension of the born inversion method to a depth dependent reference profile. Geophys. Prospect. 33, 999-1022.
Bonnans, J. F., and Zidani, H. Consistency of generalized finite difference schemes for the stochastic HJB equation, INRIA tech. report, RR 4162.
Bouche, D., and Molinet, F. (1994). Asymptotic Methods in Electromagnetics, Springer-Verlag.
Brenier, Y. (1984). Averaged multi-valued solutions for scalar conservation laws. Siam J. Numer. Anal. 21, 1013-1037.
Bulant, P. (1996). Two-point ray tracing in 3-D. Pure and Appl. Geophys. 148, 421-446.
Bulant, P., and Klimes, L. (1999). Interpolation of ray-theory travel times within rays. Geophys. J. Int. 139, 273-282.
Castella, F., Perthame, B., and Runborg, O. (2001). High frequency limit of the Helmholtz equation II: Source on a general smooth manifold, report DMA-00-34, http://www.dma. ens.fr/users/perthame.
Geoltrain, S., and Brac, J. (1993). Can we image complex structures with first-arrival travel-time? Geophysics 58, 564-575.
Brenier, Y., and Corrias, L. (1998). A kinetic formulation for multibranch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 169-190.
Chapman, C. H., and Thomson, C. J. (1983). An introduction to Maslov's asymptotic method. Geophys. J. R. Astr. Soc. 83, 143-168.
Osher, S., Cheng, L. T., Kang, M., Shim, H., and Tsai, Y.-H. Geometric optic in a phase-space based level set and eulerian framework, preprint, http://www.levelset.com/lss.html.
Courant, R., and Hilbert, D. (1989). Methods of mathematical physics. Vol. II. Partial differential equations, Reprint of the 1962 original, Wiley-Interscience.
Crandall, M. G., and Lions, P. L. (1983). Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277, 1-42.
Crandall, M. G., and Lions, P. L. (1984). Two approximation solutions of Hamilton–Jacobi equations. Math. Comp. 43, 1-19.
Duistermaat, J. J. (1974). Oscillatory integrals, lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, 207-281.
Engquist, B., Fatemi, E., and Osher, S. (1995). Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comp. Phys. 120, 145-155.
Keller, J. B., McLaughlin, D. W., and Papanicolaou, G. C. (1995). Surveys in Applied Mathematics, Vol. 1, Plenum, New York.
Engquist, B., and Runborg, O. (1996). Multiphase computation in geometrical optics. J. Comput. Appl. Math. 74, 175-192.
Engquist, B., Runborg, O., and Tornberg, A.-K. (2001). High Frequency Wave Propagation by the Segment Projection Method, UCLA CAM Report 01-13.
Steinhoff, J., Fan, M., and Wang, L. (2000). A new eulerian method for the computation of propagating short acoustic and electromagnetic pulses. J. Comp. Phys. 57, 683-706.
Fedoryuk, M. V. (1988). Partial Differential Equations (Chap. 1), Springer-Verlag.
Fleming, W. H., and McEneaney, W. M. (2000). A Max-Plus based algorithm for an HJB equation of nonlinear filtering. SIAM J. Control Optim. 38, 683-710.
Fomel, S., and Sethian, J. A. (2002). Fast phase-space computation of multiple arrival. Proc. Natl. Acad. Sci. USA 99, 7329-7334.
Gelfand, I. M., and Fomin, S. V. (1963). Calculus of Variation, Prentice–Hall.
Gérard, P., and Leichtnam, é. (1993). Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 2, 559-607.
Godlewski, E., and Raviart, P. A. (1996). Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, Vol. 118, Springer-Verlag, New York.
Golse, F., Lafitte, O., and Sentis, R. (1999). Sur la simulation numérique de la propagation laser, Rapport CEA.
Gray, S., and May, W. (1994). Kirchhoff migration using eikonal equation travel-times. Geophysics 59, 810-817.
Hairer, E., Lubich, C., and Wanner, G. (2002). Geometric Numerical Integration, Springer, Berlin.
Hoch, P., and Rascle, M. Hamilton–Jacobi equations on a manifold and applications to grid generation or refinement, preprint, http://www-math.unice.fr/~rascle/.
Izumiya, S. (1993). The theory of legendrian unfoldings and first order differential equations. Proc. Royal Soc. Edinburgh 123, 517-532.
Izumiya, S., Kossioris, G. T., and Makrakis, G. N. (2001). Multi-Valued solutions to the Eikonal equation in stratified media. Quart. Appl. Math. 59, 365-390.
Jin, S., and Li, X. Multi phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitam vs Wigner, preprint, http://www.math.wisc.edu/~jin.
Jiang, G.-S., and Peng, D. (2000). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126-2143.
Kang, M., Merryman, B., Osher, S. J., Peng, D., and Zhao, H. (1999). A PDE based fast level set method. J. Comput. Phys. 155, 410-438.
Katsaounis, T., Kossioris, G. T., Makrakis, G. N. (2001). Computation of high frequency fields near caustics. Math. Models Methods Appl. Sci. 11, 199-228.
Kossioris, G. T., Makridakis, C. H., and Souganidis, P. E. (1999). Finite volume schemes for Hamilton–Jacobi equations. Numer. Math. 83, 427-442.
Keller, J. B. (1958). A geometrical theory of diffraction. In Calculus of Variations and Its Applications, Vol. 8, McGraw–Hill, New York.
Kurganov, A., and Tadmor, E. (2000). New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations. J. Comput. Phys. 160, 720-742.
Lambare, G., Lucio, P., and Hanyga, A. (1996). Two dimensional multi-valued travel-time and amplitude maps by uniform sampling of a ray field. Geophys. J. Int. 125, 584-598.
Piserchia, P. F., Virieux, J., Rodrigues, D., Gaffet, S., and Talandier, J. (1998). A hybrid numerical modeling of t-waves propagation: Application to the midplate experiment. Geophys. J. Int. 133, 789-800.
Levermore, C. D., and Morokoff, W. J. (1999). The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59, 72-96.
Lions, P. L., and Paul, T. (1993). Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553-618.
Lucio, P. S., Lambare, G., and Hayga, A. (1996). 3D multi-valued travel time and amplitude maps. Pure Appl. Geophys. 148, 449-476.
Ludwig, D. (1966). Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, 215-250.
Markowitch, P. A., Mauser, N. J., and Sparber, C. (2002). Multi-valued geometrical optics: Wigner functions versus WKB-methods. To appear in Asymptotic Analysis.
Merryman, B., Ruuth, S., and Osher, S. J. (2000). A fixed grid method for capturing the motion of self-intersecting interfaces and related pdes. J. Comput. Phys. 163, 1-21.
Moser, T. J., and Pajchel, J. (1997). Recursive seismic ray modelling: Applications in inversion and VSP. Geophys. Prospect. 45, 885-908.
Namah, G., and Roquejoffre, J.-M. (1999). Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations. Comm. Partial Differential Equations 24, 883-893.
Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12-49.
Osher, S. J., and Shu, C. W. (1989). High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 83, 32-78.
Osher, S. J., and Rudin, L. Rapid Convergence of Approximate Solution to Shape Form Shading Problem. Never Published, not available.
Qian, J. L., and Symes, W. (2002). An adaptive finite difference method for travel-time and amplitudes. Geophysics 67, 167-176.
Qian, J. L., and Symes, W. (2002). Finite-difference quasi-P travel-times for anisotropic media. Geophysics 67, 147-155.
Rouy, E., and Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 3, 867-884.
Runborg, O. (2000). Some new results in multiphase geometrical optics. M2AN Math. Model. Numer. Anal. 34, 1203-1231.
Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591-1595.
Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press.
Souganidis, P. E. (1985). Approximation schemes for Hamilton–Jacobi equations. J. Differential Equations 59, 1-43.
Symes, W. (2002). A Slowness Matching Algorithm for Multiple Travel-Times. This issue.
Symes, W., Versteeg, R., Sei, A., and Tran, Q. H. (1994). Kirchhoff simulation migration and inversion using finite-difference travel-times and amplitudes, TRIP Technical Report, Rice University.
Van Trier, J., and Symes, W. W. (1991). Upwind finite-difference calculation of travel-times. Geophysics 56, 812-821.
Vidale, J. (1988). Finite-difference calculation of travel-times. Bull. Seis. Soc. Am. 78, 2062-2076.
Vinje, V., Iversen, E., and Gjoystdal, H. (1993). Travel-time and amplitude estimation using wavefront construction. Geophysics 58, 1157-1166.
Vinje, V., Iversen, E., Gjoystdal, H., and Astebol, K. (1996). Estimation of multi-valued arrivals in 3-D models using wavefront construction (Part I and II). Geophys. Prospect. 44, 819-858.
Young, L. C. (1969). Lecture on the Calculus of Variation and Optimal Control Theory, W. B. Saunders Co., Philadelphia/London/Toronto, Ontario.
Tsai, Y. R., Cheng, L.-T., Osher, S., and Zhao, H. K. (2001). Rapid and Accurate Computation of the Distance Function using Grids, UCLA CAM Report 01-27.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Benamou, JD. An Introduction to Eulerian Geometrical Optics (1992–2002). Journal of Scientific Computing 19, 63–93 (2003). https://doi.org/10.1023/A:1025339522111
Issue Date:
DOI: https://doi.org/10.1023/A:1025339522111