[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Introduction to Eulerian Geometrical Optics (1992–2002)

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This document is an attempt at introducing the different “Eulerian” numerical methods which have recently been developed for the simulation of geometric optics and related models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R. (1996). Numerical discretization of first order Hamilton–Jacobi equations on triangular meshes. Comm. Pure Appl. Math. 49, 1339-1373.

    Google Scholar 

  2. Abgrall, R. Numerical approximation of boundary conditions for Hamilton–Jacobi equations. Siam J. Numer. Anal., in revision.

  3. Abgrall, R., and Augoula, S. (2000). High resolution schemes for first order Hamilton–Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197-229.

    Google Scholar 

  4. Abgrall, R., and Benamou, J.-D. (1999). Big ray tracing and Eikonal solver on unstructured grids: Application to the computation of a multi-valued travel-time field in the marmousi model. Geophysics 64, 230-239.

    Google Scholar 

  5. Arnol'd, V. I. (1978). Mathematical Methods of Classical Mechanics, Springer-Verlag.

  6. Arnol'd, V. I. (1992). Catastrophe Theory, Springer-Verlag.

  7. Arnol'd, V. I., Gusein-Zade, S. M., and Varchenko, A. N. (1986). Singularities of Differential Maps, Birkhäuser.

  8. Bardos, C., Lebeau G., and Rausch, M. (1992). Sharp sufficient conditions for the observability, control and stabilization of waves from the boundary. SIAM J. Cont Optim. 30, 1024-1065.

    Google Scholar 

  9. Barles, G. (1994). Solutions de viscosité des équations de Hamilton–Jacobi, Collection Math. Appliquées, Springer-Verlag.

  10. Benamou, J.-D. (2002). Eulerian Geometrical Optics, ESAIM Proc., to appear.

  11. Benamou, J.-D. (1999). Direct solution of multi-valued phase-space solutions for Hamilton–Jacobi equations. Comm. Pure Appl. Math. 52, 1443-1475.

    Google Scholar 

  12. Benamou, J.-D. (1999). Equations “géométriques” pour les calcul d'amplitudes d'ondes haute fréquence, preprint, http://www-rocq.inria.fr/~benamou.

  13. Benamou, J.-D., and Solliec, I. (2000). An eulerian method for capturing caustics. J. Comput. Phys. 162, 132-163.

    Google Scholar 

  14. Benamou, J.-D., Lafitte, O., Sentis, R., and Solliec, I. (2002). A geometric optics method for high frequency electromagnetic field computations near fold caustics—Part I, preprint, http://www-rocq.inria.fr/~benamou.

  15. Benamou, J.-D., Lafitte, O., Sentis, R., and Solliec, I. (2002). A geometric optics method for high frequency electromagnetic fields computations near fold caustics—Part II, preprint, http://www-rocq.inria.fr/~benamou.

  16. Benamou, J.-D., Castella, F., Katsaounis, T., and Perthame, B. (2002). High frequency limit of the Helmholtz equation. Rev. Mat. Iberoamericana 18, 187-209.

    Google Scholar 

  17. Berry, M. (1992). Rays, wavefronts and phase: A picture book of cusps. In Kuiken, H. K., Blok, H., and Fewerda, H. A. (eds.), Huygens' Principle 1690–1990: Theory and Applications, Elsevier.

  18. Beylkin, G. (1985). Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform. J. Math. Phys. 26, 99-108.

    Google Scholar 

  19. Bleistein, N., and Gray, S. H. (1985). An extension of the born inversion method to a depth dependent reference profile. Geophys. Prospect. 33, 999-1022.

    Google Scholar 

  20. Bonnans, J. F., and Zidani, H. Consistency of generalized finite difference schemes for the stochastic HJB equation, INRIA tech. report, RR 4162.

  21. Bouche, D., and Molinet, F. (1994). Asymptotic Methods in Electromagnetics, Springer-Verlag.

  22. Brenier, Y. (1984). Averaged multi-valued solutions for scalar conservation laws. Siam J. Numer. Anal. 21, 1013-1037.

    Google Scholar 

  23. Bulant, P. (1996). Two-point ray tracing in 3-D. Pure and Appl. Geophys. 148, 421-446.

    Google Scholar 

  24. Bulant, P., and Klimes, L. (1999). Interpolation of ray-theory travel times within rays. Geophys. J. Int. 139, 273-282.

    Google Scholar 

  25. Castella, F., Perthame, B., and Runborg, O. (2001). High frequency limit of the Helmholtz equation II: Source on a general smooth manifold, report DMA-00-34, http://www.dma. ens.fr/users/perthame.

  26. Geoltrain, S., and Brac, J. (1993). Can we image complex structures with first-arrival travel-time? Geophysics 58, 564-575.

    Google Scholar 

  27. Brenier, Y., and Corrias, L. (1998). A kinetic formulation for multibranch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 169-190.

    Google Scholar 

  28. Chapman, C. H., and Thomson, C. J. (1983). An introduction to Maslov's asymptotic method. Geophys. J. R. Astr. Soc. 83, 143-168.

    Google Scholar 

  29. Osher, S., Cheng, L. T., Kang, M., Shim, H., and Tsai, Y.-H. Geometric optic in a phase-space based level set and eulerian framework, preprint, http://www.levelset.com/lss.html.

  30. Courant, R., and Hilbert, D. (1989). Methods of mathematical physics. Vol. II. Partial differential equations, Reprint of the 1962 original, Wiley-Interscience.

  31. Crandall, M. G., and Lions, P. L. (1983). Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277, 1-42.

    Google Scholar 

  32. Crandall, M. G., and Lions, P. L. (1984). Two approximation solutions of Hamilton–Jacobi equations. Math. Comp. 43, 1-19.

    Google Scholar 

  33. Duistermaat, J. J. (1974). Oscillatory integrals, lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, 207-281.

    Google Scholar 

  34. Engquist, B., Fatemi, E., and Osher, S. (1995). Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comp. Phys. 120, 145-155.

    Google Scholar 

  35. Keller, J. B., McLaughlin, D. W., and Papanicolaou, G. C. (1995). Surveys in Applied Mathematics, Vol. 1, Plenum, New York.

    Google Scholar 

  36. Engquist, B., and Runborg, O. (1996). Multiphase computation in geometrical optics. J. Comput. Appl. Math. 74, 175-192.

    Google Scholar 

  37. Engquist, B., Runborg, O., and Tornberg, A.-K. (2001). High Frequency Wave Propagation by the Segment Projection Method, UCLA CAM Report 01-13.

  38. Steinhoff, J., Fan, M., and Wang, L. (2000). A new eulerian method for the computation of propagating short acoustic and electromagnetic pulses. J. Comp. Phys. 57, 683-706.

    Google Scholar 

  39. Fedoryuk, M. V. (1988). Partial Differential Equations (Chap. 1), Springer-Verlag.

  40. Fleming, W. H., and McEneaney, W. M. (2000). A Max-Plus based algorithm for an HJB equation of nonlinear filtering. SIAM J. Control Optim. 38, 683-710.

    Google Scholar 

  41. Fomel, S., and Sethian, J. A. (2002). Fast phase-space computation of multiple arrival. Proc. Natl. Acad. Sci. USA 99, 7329-7334.

    Google Scholar 

  42. Gelfand, I. M., and Fomin, S. V. (1963). Calculus of Variation, Prentice–Hall.

  43. Gérard, P., and Leichtnam, é. (1993). Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 2, 559-607.

    Google Scholar 

  44. Godlewski, E., and Raviart, P. A. (1996). Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, Vol. 118, Springer-Verlag, New York.

    Google Scholar 

  45. Golse, F., Lafitte, O., and Sentis, R. (1999). Sur la simulation numérique de la propagation laser, Rapport CEA.

  46. Gray, S., and May, W. (1994). Kirchhoff migration using eikonal equation travel-times. Geophysics 59, 810-817.

    Google Scholar 

  47. Hairer, E., Lubich, C., and Wanner, G. (2002). Geometric Numerical Integration, Springer, Berlin.

    Google Scholar 

  48. Hoch, P., and Rascle, M. Hamilton–Jacobi equations on a manifold and applications to grid generation or refinement, preprint, http://www-math.unice.fr/~rascle/.

  49. Izumiya, S. (1993). The theory of legendrian unfoldings and first order differential equations. Proc. Royal Soc. Edinburgh 123, 517-532.

    Google Scholar 

  50. Izumiya, S., Kossioris, G. T., and Makrakis, G. N. (2001). Multi-Valued solutions to the Eikonal equation in stratified media. Quart. Appl. Math. 59, 365-390.

    Google Scholar 

  51. Jin, S., and Li, X. Multi phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitam vs Wigner, preprint, http://www.math.wisc.edu/~jin.

  52. Jiang, G.-S., and Peng, D. (2000). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126-2143.

    Google Scholar 

  53. Kang, M., Merryman, B., Osher, S. J., Peng, D., and Zhao, H. (1999). A PDE based fast level set method. J. Comput. Phys. 155, 410-438.

    Google Scholar 

  54. Katsaounis, T., Kossioris, G. T., Makrakis, G. N. (2001). Computation of high frequency fields near caustics. Math. Models Methods Appl. Sci. 11, 199-228.

    Google Scholar 

  55. Kossioris, G. T., Makridakis, C. H., and Souganidis, P. E. (1999). Finite volume schemes for Hamilton–Jacobi equations. Numer. Math. 83, 427-442.

    Google Scholar 

  56. Keller, J. B. (1958). A geometrical theory of diffraction. In Calculus of Variations and Its Applications, Vol. 8, McGraw–Hill, New York.

    Google Scholar 

  57. Kurganov, A., and Tadmor, E. (2000). New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations. J. Comput. Phys. 160, 720-742.

    Google Scholar 

  58. Lambare, G., Lucio, P., and Hanyga, A. (1996). Two dimensional multi-valued travel-time and amplitude maps by uniform sampling of a ray field. Geophys. J. Int. 125, 584-598.

    Google Scholar 

  59. Piserchia, P. F., Virieux, J., Rodrigues, D., Gaffet, S., and Talandier, J. (1998). A hybrid numerical modeling of t-waves propagation: Application to the midplate experiment. Geophys. J. Int. 133, 789-800.

    Google Scholar 

  60. Levermore, C. D., and Morokoff, W. J. (1999). The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59, 72-96.

    Google Scholar 

  61. Lions, P. L., and Paul, T. (1993). Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553-618.

    Google Scholar 

  62. Lucio, P. S., Lambare, G., and Hayga, A. (1996). 3D multi-valued travel time and amplitude maps. Pure Appl. Geophys. 148, 449-476.

    Google Scholar 

  63. Ludwig, D. (1966). Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, 215-250.

    Google Scholar 

  64. Markowitch, P. A., Mauser, N. J., and Sparber, C. (2002). Multi-valued geometrical optics: Wigner functions versus WKB-methods. To appear in Asymptotic Analysis.

  65. Merryman, B., Ruuth, S., and Osher, S. J. (2000). A fixed grid method for capturing the motion of self-intersecting interfaces and related pdes. J. Comput. Phys. 163, 1-21.

    Google Scholar 

  66. Moser, T. J., and Pajchel, J. (1997). Recursive seismic ray modelling: Applications in inversion and VSP. Geophys. Prospect. 45, 885-908.

    Google Scholar 

  67. Namah, G., and Roquejoffre, J.-M. (1999). Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations. Comm. Partial Differential Equations 24, 883-893.

    Google Scholar 

  68. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12-49.

    Google Scholar 

  69. Osher, S. J., and Shu, C. W. (1989). High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 83, 32-78.

    Google Scholar 

  70. Osher, S. J., and Rudin, L. Rapid Convergence of Approximate Solution to Shape Form Shading Problem. Never Published, not available.

  71. Qian, J. L., and Symes, W. (2002). An adaptive finite difference method for travel-time and amplitudes. Geophysics 67, 167-176.

    Google Scholar 

  72. Qian, J. L., and Symes, W. (2002). Finite-difference quasi-P travel-times for anisotropic media. Geophysics 67, 147-155.

    Google Scholar 

  73. Rouy, E., and Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 3, 867-884.

    Google Scholar 

  74. Runborg, O. (2000). Some new results in multiphase geometrical optics. M2AN Math. Model. Numer. Anal. 34, 1203-1231.

    Google Scholar 

  75. Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591-1595.

    Google Scholar 

  76. Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press.

  77. Souganidis, P. E. (1985). Approximation schemes for Hamilton–Jacobi equations. J. Differential Equations 59, 1-43.

    Google Scholar 

  78. Symes, W. (2002). A Slowness Matching Algorithm for Multiple Travel-Times. This issue.

  79. Symes, W., Versteeg, R., Sei, A., and Tran, Q. H. (1994). Kirchhoff simulation migration and inversion using finite-difference travel-times and amplitudes, TRIP Technical Report, Rice University.

  80. Van Trier, J., and Symes, W. W. (1991). Upwind finite-difference calculation of travel-times. Geophysics 56, 812-821.

    Google Scholar 

  81. Vidale, J. (1988). Finite-difference calculation of travel-times. Bull. Seis. Soc. Am. 78, 2062-2076.

    Google Scholar 

  82. Vinje, V., Iversen, E., and Gjoystdal, H. (1993). Travel-time and amplitude estimation using wavefront construction. Geophysics 58, 1157-1166.

    Google Scholar 

  83. Vinje, V., Iversen, E., Gjoystdal, H., and Astebol, K. (1996). Estimation of multi-valued arrivals in 3-D models using wavefront construction (Part I and II). Geophys. Prospect. 44, 819-858.

    Google Scholar 

  84. Young, L. C. (1969). Lecture on the Calculus of Variation and Optimal Control Theory, W. B. Saunders Co., Philadelphia/London/Toronto, Ontario.

    Google Scholar 

  85. Tsai, Y. R., Cheng, L.-T., Osher, S., and Zhao, H. K. (2001). Rapid and Accurate Computation of the Distance Function using Grids, UCLA CAM Report 01-27.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benamou, JD. An Introduction to Eulerian Geometrical Optics (1992–2002). Journal of Scientific Computing 19, 63–93 (2003). https://doi.org/10.1023/A:1025339522111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025339522111

Navigation