[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Problems, Models and Complexity. Part II: Application to the DLSP

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In Part I of this study, we suggest to identify an operations research (OR) problem with the equivalence class of models describing the problem and enhance the standard computer-science theory of computational complexity to be applicable to this situation of an often model-based OR context. The Discrete Lot-sizing and Scheduling Problem (DLSP) is analysed here in detail to demonstrate the difficulties which can arise if these aspects are neglected and to illustrate the new theoretical concept. In addition, a new minimal model is introduced for the DLSP which makes this problem eventually amenable to a rigorous analysis of its computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowman, E. H. (1959) The schedule-sequencing problem, Oper. Res. 7, 621–624.

    Google Scholar 

  • Brüggemann, W. (1995) Ausgewählte Probleme der Produktionsplanung - Modellierung, Komplexität und neuere Lösungsmöglichkeiten, Physica-Verlag, Heidelberg.

    Google Scholar 

  • Brüggemann, W. and Jahnke, H. (1994) Remarks on: 'some extensions of the discrete lotsizing and scheduling problem' by M. Salomon, L. G. Kroon, R. Kuik and L. N. Van Wassenhove, In: Management Sci. 37(7) (1991), 801–812. Working Paper, Institut für Logistik und Transport, Universität Hamburg. Superseded by Brüggemann and Jahnke (1997).

  • Brüggemann, W. and Jahnke, H. (1997) Remarks on: 'some extensions of the discrete lotsizing and scheduling problem', Management Sci. 43(1), 122.

    Google Scholar 

  • Brüggemann, W. and Jahnke, H. (2000) The discrete lot-sizing and scheduling problem: Complexity and modification for batch availability, Europ. J. Oper. Res. 124(3), 511–528.

    Google Scholar 

  • Brüggemann, W., Fischer, K. and Jahnke, H. (2003) Problems, models and complexity. Part I: Theory, J. Math. Modelling Algorithms 2 (2003), 121–151 (this issue).

    Google Scholar 

  • Cattrysse, D., Salomon, M., Kuik, R. and Van Wassenhove, L. N. (1993) A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup times, Management Sci. 39(4), 477–486.

    Google Scholar 

  • Dinkelbach,W. (1964) Zum Problem der Produktionsplanung in Ein-und Mehrproduktunternehmen, Physica-Verlag, Würzburg.

  • Drexl, A. and Kimms, A. (1997) Lot sizing and scheduling - survey and extensions, Europ. J. Oper. Res. 99, 221–235.

    Google Scholar 

  • Fleischmann, B. (1990) The discrete lot-sizing and scheduling problem, Europ. J. Oper. Res. 44, 337–348.

    Google Scholar 

  • Fleischmann, B. (1994) The discrete lot-sizing and scheduling problem with sequence-dependent setup costs, Europ. J. Oper. Res. 75, 395–404.

    Google Scholar 

  • Garey, M. R. and Johnson, D. S. (1978) 'strong’ NP-completeness results: Motivation, examples, and implications, J. Assoc. Comput. Mach. 25, 499–508.

    Google Scholar 

  • Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York.

    Google Scholar 

  • Jordan, C. (1996) Batching and Scheduling - Models and Methods for Several Problem Classes, Springer, Berlin.

    Google Scholar 

  • Jordan, C. (1998) A two-phase genetic algorithm to solve variants of the batch sequencing problem, Internat. J. Prod. Res. 36(3), 745–760.

    Google Scholar 

  • Jordan, C. and Drexl, A. (1995) A comparison of constraint and mixed-integer programming solvers for batch sequencing with sequence-dependent setups, ORSA J. Comput. 7(2), 160–165.

    Google Scholar 

  • Jordan, C. and Drexl, A. (1998) Discrete lotsizing and scheduling by batch sequencing, Management Sci. 44(5), 698–713.

    Google Scholar 

  • Jordan, C. and Koppelmann, J. (1998) Multi-level lotsizing and scheduling by batch sequencing, J. Oper. Res. Soc. 49, 1212–1218.

    Google Scholar 

  • Magnanti, T. L. and Vachani, R. (1990) A strong cutting plane algorithm for production scheduling with changeover costs, Oper. Res. 38(3), 456–473.

    Google Scholar 

  • Manne, A. S. (1960) On the job-shop scheduling problem, Oper. Res. 8(2), 219–223.

    Google Scholar 

  • Salomon, M. (1991) Deterministic Lotsizing Models for Production Planning, Springer-Verlag, Berlin.

    Google Scholar 

  • Salomon, M., Kroon, L. G., Kuik, R. and Van Wassenhove, L. N. (1991) Some extensions of the discrete lotsizing and scheduling problem, Management Sci. 37, 801–812.

    Google Scholar 

  • Türck, H. (1997) Das diskrete simultane Losgröß en-und Losreihenfolgeproblem, Diplom-Thesis (in German), Universität Hamburg.

  • Webster, S. (1999) Remarks on 'some extensions of the discrete lotsizing and scheduling problem', Management Sci. 45, 768–769.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüggemann, W., Fischer, K. & Jahnke, H. Problems, Models and Complexity. Part II: Application to the DLSP. Journal of Mathematical Modelling and Algorithms 2, 153–169 (2003). https://doi.org/10.1023/A:1024979501350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024979501350

Navigation