[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have developed a method that combines molecular interaction fields with soft independent modeling of class analogy (SIMCA) Wold:1977 to predict pharmacokinetic drug properties. Several additional considerations to those made in traditional QSAR are required in order to develop a successful QSPR strategy that is capable of accommodating the many complex factors that contribute to key pharmacokinetic properties such as ADME (absorption, distribution, metabolism, and excretion) and toxicology. An accurate prediction of oral bioavailability, for example, requires that absorption and first-pass hepatic elimination both be taken into consideration. To accomplish this, general properties of molecules must be related to their solubility and ability to penetrate biological membranes, and specific features must be related to their particular metabolic and toxicological profiles. Here we describe a method, which is applicable to structurally diverse data sets while utilizing as much detailed structural information as possible. We address the issue of the molecular alignment of a structurally diverse set of compounds using idiotropic field orientation (IFO), a generalization of inertial field orientation Clark:1998. We have developed a second flavor of this method, which directly incorporates electrostatics into the molecular alignment. Both variations of IFO produce a characteristic orientation for each structure and the corresponding molecular fields can then be analyzed using SIMCA. Models are presented for human intestinal absorption, blood-brain barrier penetration and bioavailability to demonstrate ways in which this tool can be used early in the drug development process to identify leads likely to exhibit poor pharmacokinetic behavior in pre-clinical studies, and we have explored the influence of conformation and molecular field type on the statistical properties of the models obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wold, S., Sjöström, M. Method for Analyzing Chemical Data in Terms of Similarity and Analogy. In: Chemometrics: Theory and Applications, Kowalski, B.R., (Ed.), ACS Symposium Series, 1977, 52, 243-282.

  2. Clark, R.D., Ferguson, A.M., Cramer, R.D., Persp. Drug Discov. Design. (1998), 9/10/11, 213.

    Google Scholar 

  3. Smith, D.A., van der Waterbeemd, H., Curr. Opin. Chem. Biol., 3 (1999) 372.

    Google Scholar 

  4. Hilgers, A.R., Conradi, R.A., Burton, P.S., Pharm. Res., 7 (1990) 902.

    Google Scholar 

  5. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney P.J., Adv. Drug Del. Rev., 23 (1997) 3.

    Google Scholar 

  6. Palm, K., Luthman, K., Ungell, A. Strandlund, G., Arturssan, P., J. Pharm. Sci., 85 (1996) 32.

    Google Scholar 

  7. Palm, K., Luthman, K., Ungell, A. Strandlund, G., Beigi, F., Lundahl, P., Arturssan, P., J. Med. Chem., 41 (1998) 5382.

    Google Scholar 

  8. Clark, D.E., J. Pharm. Sci., 88 (1999) 807.

    Google Scholar 

  9. Osterberg, T., Norinder, U., J. Chem. Inf. Comput. Sci., 40 (2000) 1408.

    Google Scholar 

  10. Ertl, P., Rohde, B., Selzer, P., J. Med. Chem., 43 (2000) 3714.

    Google Scholar 

  11. Clark, D.E., J. Pharm. Sci., 88, (1999) 815.

    Google Scholar 

  12. Oprea, T.I., Gottries, J., J.Mol. Graphics Modeling., 17 (1999) 261.

    Google Scholar 

  13. Yoshida, F., Topliss, J.G., J. Med. Chem., 43 (2000) 2575.

    Google Scholar 

  14. Lombardo, F., Blake, J.F., Curaolo, W.J., J. Med. Chem., 39 (1996) 4750.

    Google Scholar 

  15. Cramer, R.D., DePriest, S.A., Patterson, D.E., Hecht, P. The Developing Practice of Comparative Molecular Field 76 Analysis in 3D-QSAR in Drug Design: Theory, Methods and Applications. ESCOM, Leiden, 1993.

    Google Scholar 

  16. Cramer, R.D., Patterson, D.E., Bunce, J.D., J. Amer. Chem. Assoc., 110 (1998) 5959.

    Google Scholar 

  17. Martin, Y.C., Kim, K.H., Liu, C.T., Quant. Struc-Act. Relat., 1 (1996) 1.

    Google Scholar 

  18. Klebe, G., Persp. Drug Disc. Design., (1998) 87.

  19. Ekins, S., Durst, G.L., Stratford, R.E., Thorner, D.A., Lewis, R., Loncharich, R.J., Wikel, J.H., J. Chem. Inf. Comput. Sci., 41 (2001) 1578.

    Google Scholar 

  20. Ekins, S., Bravi, G., Ring, B.J., Gillespie, T.A., Gillespie, J.S., VandenBranden, M., Wrighton, S.A., Wikel, J.H., J. Pharmacol. Exp. Thera., 288 (1999) 21.

    Google Scholar 

  21. Segarra, V., López, M., Ryder, H., Palacios, J.M., Quant. Struct.-Act. Relat., 18 (1999) 474-481.

    Google Scholar 

  22. Cruciani, G., Carrupt, P.A., Testa, B., J. Mol. Structure: Theochem., 503 (2000) 17.

    Google Scholar 

  23. VolSurf is distributed by Tripos, Inc., 1699 S. Hanley Road, St. Louis Missouri, U.S.A.

  24. Wessel, M.D., Jurs, P.C., Tolan, J.W., Muskal, S.M., J. Chem. Inf. Comput. Sci., 38 (1998), 726.

    Google Scholar 

  25. Oprea, T.I., Gottries, J., J. Mol. Graphics Modeling, 17 (1999) 261.

    Google Scholar 

  26. Yoshida, F., Topliss, J.G., J. Med. Chem., 43 (2000) 2575.

    Google Scholar 

  27. Sietsema, W.J., Intern. J. Clin. Pharm. Therapy Tox., 27 (1989) 179.

    Google Scholar 

  28. Abraham, M.H., Chadha, H.S., Mitchell, R.C., J. Pharm. Science., 83 (1994) 1257.

    Google Scholar 

  29. Lombardo, F., Blake, J.F., Curaolo, W.J., J. Med. Chem., 39 (1996) 4750.

    Google Scholar 

  30. Jørgensen, F.S., Jensen, L.H., Capion, D., Christensen, I.T. Prediction of Blood-Brain Barrier Penetration. In Rational Approaches to Drug Desig, Höltje, H.-D., and Sippl, W., (Eds.) Prous Science: Barcelona, 2001, pp. 281-285.

    Google Scholar 

  31. SYBYL® 6.8.1 Tripos Inc., 1699 S. Hanley Road, St. Louis, Missouri, 63144, U.S.A.

  32. The Merck Index. 12th Edition on CD-ROM, version 12:3 2000. Chapman & Hall / CRCnetBASE Electronic Publishing Division.

  33. CONCORD was developed by R.S. Pearlman, A. Rusinko, J.M. Skell and R. Balducci at the University of Texas, Austin TX and is available exclusively from Tripos, Inc., 1699 S. Hanley Road, St. Louis Missouri, U.S.A.

  34. Clark, M., Cramer, R.D. III., Van Opdenbosch, N., J. Comp. Chem., 10 (1989) 982.

    Google Scholar 

  35. Gasteiger, J., Marsili., Tetrahedron, 36, (1980) 3219.

    Google Scholar 

  36. Clark, R.D., Leonard, J.M., Strizhev, A. Pharmacophore Models and Comparative Molecular Field Analysis (CoMFA). In Pharmacophore Perception, Development, and Use in Drug Design, Güner, O.F., (Ed), International University Line: La Jolla, 2000, pp. 151-169.

    Google Scholar 

  37. Klebe, G., Abraham, U., Mietzner, T., J. Med. Chem., 37 (1994) 4130.

    Google Scholar 

  38. Hunt, P.A., J. Comp-Aided Mol. Design., 13 (1999) 453.

    Google Scholar 

  39. Confort was developed by R.S. Pearlman and R. Balducci at the University of Texas, Austin TX and is distributed by Tripos, Inc., 1699 S. Hanley Road, St. Louis Missouri, U.S.A.

  40. Boström, J.J., Comp-Aided Mol. Design., 15 (2001) 1137.

    Google Scholar 

  41. Lin, J.H., Lu, A.Y.H., Pharmacol. Rev., 49 (1997) 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolohan, P.R., Clark, R.D. Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA. J Comput Aided Mol Des 17, 65–76 (2003). https://doi.org/10.1023/A:1024582008908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024582008908

Navigation