Abstract
We present the theory and construction of a new class of designs, which we call SEEDs (spontaneous emission error designs), arising in the study of decay processes of certain quantum systems used in the newly emerging field of quantum computing. We show that there is a simple and surprising connection between subspaces of the system Hilbert space, stable against these quantum jumps and the incidence matrices of SEEDs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G. Alber, T. Beth, C. Charnes, A. Delgado, M. Grassl and M. Mussinger, Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes, Physical Review Letters, Vol. 86, No. 19 (2001) pp. 4402–4405.
A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, Elementary gates for quantum computation, Physical Review A, Vol. 52, No. 5 (1995) pp. 3457–3467.
T. Beth, A class of designs protecting against quantum jumps. In (A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Tha, eds.), Finite Geometries, Oberwolfach: Mathematisches Forschungsinstitut, Report No. 52/2001, p. 4
T. Beth and M. Grassl, The quantum Hamming and hexacodes, Fortschritte der Physik, Vol. 46, No. 4–5 (1998) pp. 459–491.
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Encyclopaedia of Mathematics, 2nd ed., Cambridge University Press, Cambridge (1999).
W. Bosma, J. J. Cannon and C. Playoust, The Magma algebra system I: the user language, Journal of Symbolic Computation, Vol. 24, No. 3–4 (1997) pp. 235–266.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Physical Review Letters, Vol. 78, No. 3 (1997a) pp. 405–408.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), In Proceedings ISIT 97 (1997b) p. 292.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, Vol. 44, No. 4 (1998) pp. 1369–1387.
A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review A, Vol. 54, No. 2 (1996) pp. 1098–1105.
L. G. Chouinard II, Partitions of the 4–subset of a 13–set into disjoint projective planes, Discrete Mathematics, Vol. 45 (1983) pp. 297–300.
J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions, Physical Review Letters, Vol. 74, No. 20 (1995) pp. 4091–4094.
C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press (1996).
D. G. Cory, A. F. Fahmy and T. F. Havel, Ensemble quantum computing by nuclear resonance spectroscopy, Technical Report TR-10–96, B. C. M. P., Harvard Medical Medical School, Boston (1996).
P. M. A. Dirac, The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford (1958).
A. Ekert and C. Macchiavello, Quantum error correction for communication, Physical ReviewLetters,Vol. 77, No. 12 (1996) pp. 2585–2588.
J. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of formally self-dual codes, In: Proceedings of the 36th Allerton Conference on Communication, Control and Computing (1998) pp. 566–575.
N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science, Vol. 275, No. 5298 (1997) pp. 350–356.
D. Gottesman, A class of quantum error-correcting codes saturating the quantum hamming bound, Physical Review A, Vol. 54, No. 3 (1996) pp. 1862–1868.
M. Grassl and T. Beth, A note on non-additive quantum codes, Technical Report quant-ph/9703016, Los Alamos National Laboratory (1997).
M. Grassl, T. Beth and T. Pellizzari, Codes for the quantum erasure channel, Physical Review A, Vol. 56, No. 1 (1997) pp. 33–38.
M. Harada and P. R. J. Őstergård, Classification of extremal formally self-dual even codes of length 22, to appear in Graphs and Combinatorics (2002).
G. T. Kennedy and V. Pless, On designs and formally self-dual codes, Designs, Codes and Cryptography, (1994) pp. 43–55.
A. Klappenecker and M. Rötteler, Beyond stabilizer codes I: nice error bases, IEEE Transactions on Information Theory, LANL preprint quant-ph/0010082, Vol. 48, No. 8 (2002) pp. 2392–2395.
E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Physical Review A, Vol. 55, No. 2 (1997) pp. 900–911.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).
T. Pellizzari, T. Beth, M. Grassl and J. Müller-Quade, Stabilization of quantum states in quantum optical systems, Physical Review A, Vol. 54, No. 4 (1996) pp. 2698–2702.
T. Pellizzari, S. A. Gardiner, J. I. Cirac and P. Zoller, Decoherence, continuous observation, and quantum computing: a cavity QED model, Physical Review Letters, Vol. 75, No. 21 (1995) pp. 3788–3791.
E. M. Rains and N. J. A. Sloane, Self-dual codes. In (V. P. Pless and W. C. Huffman eds.), Handbook of Coding Theory, North-Holland (1998).
P. W. Shor, Algorithms for quantum computation: discrete logarithm and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press (1994) pp. 124–134.
P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A, Vol. 52, No. 4 (1995) pp. R2493–R2496.
J. Simonis, The [18, 9, 6] code is unique, Discrete Mathematics, Vol. 106/107 (1992) pp. 439–448.
A. Steane, Multiple particle interference and quantum error correction, Proceedings of the Royal Society London Series A, Vol. 452 (1996a) pp. 2551–2577.
A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters, Vol. 77, No. 5 (1996b) pp. 793–797.
W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, Vol. 299, No. 5886 (1982) pp. 802–803.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Beth, T., Charnes, C., Grassl, M. et al. A New Class of Designs Which Protect against Quantum Jumps. Designs, Codes and Cryptography 29, 51–70 (2003). https://doi.org/10.1023/A:1024188005329
Issue Date:
DOI: https://doi.org/10.1023/A:1024188005329