[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A New Class of Designs Which Protect against Quantum Jumps

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present the theory and construction of a new class of designs, which we call SEEDs (spontaneous emission error designs), arising in the study of decay processes of certain quantum systems used in the newly emerging field of quantum computing. We show that there is a simple and surprising connection between subspaces of the system Hilbert space, stable against these quantum jumps and the incidence matrices of SEEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Alber, T. Beth, C. Charnes, A. Delgado, M. Grassl and M. Mussinger, Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes, Physical Review Letters, Vol. 86, No. 19 (2001) pp. 4402–4405.

    Google Scholar 

  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, Elementary gates for quantum computation, Physical Review A, Vol. 52, No. 5 (1995) pp. 3457–3467.

    Google Scholar 

  3. T. Beth, A class of designs protecting against quantum jumps. In (A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Tha, eds.), Finite Geometries, Oberwolfach: Mathematisches Forschungsinstitut, Report No. 52/2001, p. 4

  4. T. Beth and M. Grassl, The quantum Hamming and hexacodes, Fortschritte der Physik, Vol. 46, No. 4–5 (1998) pp. 459–491.

    Google Scholar 

  5. T. Beth, D. Jungnickel and H. Lenz, Design Theory, Encyclopaedia of Mathematics, 2nd ed., Cambridge University Press, Cambridge (1999).

    Google Scholar 

  6. W. Bosma, J. J. Cannon and C. Playoust, The Magma algebra system I: the user language, Journal of Symbolic Computation, Vol. 24, No. 3–4 (1997) pp. 235–266.

    Google Scholar 

  7. A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Physical Review Letters, Vol. 78, No. 3 (1997a) pp. 405–408.

    Google Scholar 

  8. A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), In Proceedings ISIT 97 (1997b) p. 292.

  9. A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, Vol. 44, No. 4 (1998) pp. 1369–1387.

    Google Scholar 

  10. A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review A, Vol. 54, No. 2 (1996) pp. 1098–1105.

    Google Scholar 

  11. L. G. Chouinard II, Partitions of the 4–subset of a 13–set into disjoint projective planes, Discrete Mathematics, Vol. 45 (1983) pp. 297–300.

    Google Scholar 

  12. J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions, Physical Review Letters, Vol. 74, No. 20 (1995) pp. 4091–4094.

    Google Scholar 

  13. C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press (1996).

  14. D. G. Cory, A. F. Fahmy and T. F. Havel, Ensemble quantum computing by nuclear resonance spectroscopy, Technical Report TR-10–96, B. C. M. P., Harvard Medical Medical School, Boston (1996).

    Google Scholar 

  15. P. M. A. Dirac, The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford (1958).

    Google Scholar 

  16. A. Ekert and C. Macchiavello, Quantum error correction for communication, Physical ReviewLetters,Vol. 77, No. 12 (1996) pp. 2585–2588.

    Google Scholar 

  17. J. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of formally self-dual codes, In: Proceedings of the 36th Allerton Conference on Communication, Control and Computing (1998) pp. 566–575.

  18. N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science, Vol. 275, No. 5298 (1997) pp. 350–356.

    Google Scholar 

  19. D. Gottesman, A class of quantum error-correcting codes saturating the quantum hamming bound, Physical Review A, Vol. 54, No. 3 (1996) pp. 1862–1868.

    Google Scholar 

  20. M. Grassl and T. Beth, A note on non-additive quantum codes, Technical Report quant-ph/9703016, Los Alamos National Laboratory (1997).

  21. M. Grassl, T. Beth and T. Pellizzari, Codes for the quantum erasure channel, Physical Review A, Vol. 56, No. 1 (1997) pp. 33–38.

    Google Scholar 

  22. M. Harada and P. R. J. Őstergård, Classification of extremal formally self-dual even codes of length 22, to appear in Graphs and Combinatorics (2002).

  23. G. T. Kennedy and V. Pless, On designs and formally self-dual codes, Designs, Codes and Cryptography, (1994) pp. 43–55.

  24. A. Klappenecker and M. Rötteler, Beyond stabilizer codes I: nice error bases, IEEE Transactions on Information Theory, LANL preprint quant-ph/0010082, Vol. 48, No. 8 (2002) pp. 2392–2395.

    Google Scholar 

  25. E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Physical Review A, Vol. 55, No. 2 (1997) pp. 900–911.

    Google Scholar 

  26. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).

    Google Scholar 

  27. T. Pellizzari, T. Beth, M. Grassl and J. Müller-Quade, Stabilization of quantum states in quantum optical systems, Physical Review A, Vol. 54, No. 4 (1996) pp. 2698–2702.

    Google Scholar 

  28. T. Pellizzari, S. A. Gardiner, J. I. Cirac and P. Zoller, Decoherence, continuous observation, and quantum computing: a cavity QED model, Physical Review Letters, Vol. 75, No. 21 (1995) pp. 3788–3791.

    Google Scholar 

  29. E. M. Rains and N. J. A. Sloane, Self-dual codes. In (V. P. Pless and W. C. Huffman eds.), Handbook of Coding Theory, North-Holland (1998).

  30. P. W. Shor, Algorithms for quantum computation: discrete logarithm and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press (1994) pp. 124–134.

  31. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A, Vol. 52, No. 4 (1995) pp. R2493–R2496.

    Google Scholar 

  32. J. Simonis, The [18, 9, 6] code is unique, Discrete Mathematics, Vol. 106/107 (1992) pp. 439–448.

    Google Scholar 

  33. A. Steane, Multiple particle interference and quantum error correction, Proceedings of the Royal Society London Series A, Vol. 452 (1996a) pp. 2551–2577.

    Google Scholar 

  34. A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters, Vol. 77, No. 5 (1996b) pp. 793–797.

    Google Scholar 

  35. W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, Vol. 299, No. 5886 (1982) pp. 802–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beth, T., Charnes, C., Grassl, M. et al. A New Class of Designs Which Protect against Quantum Jumps. Designs, Codes and Cryptography 29, 51–70 (2003). https://doi.org/10.1023/A:1024188005329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024188005329

Navigation