[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hydrodynamical Modeling Of Oceanic Vortices

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Mesoscale coherent vortices are numerous in the ocean.Though they possess various structures in temperature and salinity,they are all long-lived, fairly intense and mostly circular. Thephysical variable which best describes the rotation and the density anomaly associated with coherent vortices is potential vorticity. It is diagnostically related to velocity and pressure, when the vortex is stationary. Stationary vortices can be monopolar (circular or elliptical) or multipolar; their stability analysis shows thattransitions between the various stationary shapes are possible when they become unstable. But stable vortices can also undergo unsteady evolutions when perturbed by environmental effects, likelarge-scale shear or strain fields, β-effect or topography. Changes in vortex shapes can also result from vortex interactions. such as the pairing, merger or vertical alignment of two vortices, which depend on their relative polarities and depths. Such interactions transfer energy and enstrophy between scales, and are essential in two-dimensional and in geostrophic turbulence. Finally, in relation with the observations, we describe a few mechanisms of vortex generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, M. and Yamagata, T.: 1994, Aysmmetric evolution of eddies in shallow water, Chaos 4(2), 163–175.

    Google Scholar 

  • Aref, H. and Siggia, E.D.: 1981, Evolution and breakdown of a vortex street in two dimensions, J. Fluid Mech. 109, 435–463.

    Google Scholar 

  • Armi, L., Hebert, D., Oakey, N., Price, J.F., Richarson, P.L., Rossby, T.M., and Ruddick, B.: 1989), Two years in the life of a Mediterranean salt lens, J. Phys. Oceanogr. 19, 354–370.

    Google Scholar 

  • Arnol'd, V.I.: 1965, Conditions for nonlinear stability of stationary plance curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR, 162, 975–978, (Engl. transl. Sov. Math. Dokl. 6, 773–777, 1965).

    Google Scholar 

  • Arnol'd, V.I.: 1966, Over an a priori estimate in the theory of hydrodynamic stability, Izv. Uchebn. Zaved. Mat. 54(5), 3–5 (Engl. transl. Am. Math. Soc. Transl. Series 2 79, 267–269, 1969).

    Google Scholar 

  • Babiano A, Basdevant, C., Le Roy, P., and Sadourny, R.: 1990, Relative dispersion in twodimensional turbulence, J. Fluid Mech. 214, 535–557.

    Google Scholar 

  • Barnier, B., Hua, B.L., and Le Provost, C.: 1991, On the catalytic role of high baroclinic modes in eddy-driven large-scale circulation, J. Phys. Oceanogr. 21, 976–997.

    Google Scholar 

  • Barth, J.A.: 1994, Short-wavelength instabilities on coastal jets and fronts, J. Geophys. Res. 99(C8), 16095–16115.

    Google Scholar 

  • Basdevant, C., Legras, B., Sadourny, R., and Beland, M.: 1981, A study of barotropic model flows: intermittency, waves and predictability, J. Atmos. Sci. 38, 2305–2326.

    Google Scholar 

  • Batchelor, G.K.: 1967, An Introduction to Fluid Dynamics, Cambridge University Press, London.

    Google Scholar 

  • Batchelor, G.K.: 1969, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids Suppl. 12(II), I233–239.

    Google Scholar 

  • Beckmann, A.: 1988, Vertical structure of midlatitude mesoscale instabilities, J. Phys. Oceanogr. 18, 1354–1371.

    Google Scholar 

  • Bell, G.I.: 1991, The nonlinear evolution of a perturbed axisymmetric eddy. Preprint, WHOI.

  • Benzi, R., Patarnello, S., and Santangelo, P.: 1988, Self-similar coherent structures in twodimensional decaying turbulence, J. Phys. A: Math. gen. 21, 1221–1237.

    Google Scholar 

  • Benzi, R., Briscolini, M., Colella, M., and Santangelo, P.: 1992, A simple point vortex model for two-dimensional decaying turbulence, Phys. Fluids, A, 4, 1036–039.

    Google Scholar 

  • Berkvens, P.J.F.: 1991, Construction of modons and their relevance to atmospheric blocking: a review of earlier results, In Coherent Vortex Structures in Geophysical Fluid Dynamics, R 91-7, Lecture notes of seminars at the IMO, University of Utrecht, The Netherlands, 231–252.

    Google Scholar 

  • Bertrand, C. and Carton, X.J.: 1993, Vortex merger on the beta-plane, Compte-Rendus Acad. Sc. Paris 316(II), 1201–1206.

    Google Scholar 

  • Boss, E., Paldor, N., and Thomson, L.: 1996, Stability of a potential vorticity front: from quasigeostrophy to shallow-water, J. Fluid Mech. 315, 65–84.

    Google Scholar 

  • Bower, A.S., Armi, L., and Ambar, I.: 1995, Direct evidence of meddy formation off the southwestern coast of Portugal, Deep-Sea Res. I 42, 1621–1630.

    Google Scholar 

  • Bretherton, F.P.: 1966, Baroclinic instability and the short wavelength cut-off in terms of potential vorticity, Quart. J. Roy. Meteor. Soc. 92, 335–345.

    Google Scholar 

  • Bretherton, F.P. and Haidvogel, D.B.: 1976, Two-dimensional turbulence over topography, J. Fluid Mech. 78, 129–154.

    Google Scholar 

  • Capéran, P. and Verron, J.: 1988, Numerical simulation of a physical experiment on two-dimensional vortex merging. Fluid Dyn. Res. 3, 87–92.

    Google Scholar 

  • Caprino, S. and Salusti, E.: 1986, Stability of oceanic eddies as vortex patches, Ocean Modelling 72, unpublished manuscript, 12–15.

    Google Scholar 

  • Carnevale, G.F., Cavazza, P., Orlandi, P., and Purini, R.: 1991, An explanation for anomalous vortex merger in rotating tank experiments, Phys. Fluids, A, 3(5), 1411–1415.

    Google Scholar 

  • Carnevale, G.F., McWilliams, J.C., Pomeau, Y., Weiss, J.B., and Young, W.R.: 1991, Evolution of vortex statistics in two-dimensional turbulence, Phys. Rev. Lett. 66, 2735–2737.

    Google Scholar 

  • Carnevale, G.F. and Kloosterziel, R.C.: 1994, Emergneca and evolution of triangular vortices, J. Fluid Mech. 259, 305–331.

    Google Scholar 

  • Carton, X.J.: 1992, The merger of homostrophic shielded vortices, Europhys. Lett. 18(8), 697–703.

    Google Scholar 

  • Carton, X.J., Flierl, G.R., and Polvani, L.M.: 1989, The generation of tripoles from unstable axisymmetric isolated vortex structures, Europhys. Lett. 9(4), 339–344.

    Google Scholar 

  • Carton, X.J. and McWilliams, J.C.: 1989, Barotropic and baroclinic instabilities of axisymmetric vortices in a QG model. In J.C.J. Nihoul and B.M. Jamart (eds), Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, Elsevier Oceanographic Series, 50, 225-244.

  • Carton, X.J. and Bertrand, C.: 1993, The influence of environmental parameters on two-dimensional vortex merger. In G.J.F. Heijst (ed.), Modelling of Oceanic vortices, North Holland, 125–134.

  • Carton, X.J. and Legras, B.: 1994, The life-cycle of tripoles in 2D incompressible flows, J. Fluid Mech. 267, 53–82.

    Google Scholar 

  • Carton, X.J. and McWilliams, J.C.: 1996, Nonlinear oscillatory evolution of a baroclinically unstable geostrophic vortex, Dyn. Atmos. Oceans, 24 207–214.

    Google Scholar 

  • Carton, X.J. and Corréard, S.M.: 1999, Baroclinic tripolar vortices: formation and subsequent evolution. In Sorensen, Hopfinger and Aubry (eds), Simulation and identification of organized structures in flows, IUTAM/SIMFLOWSymposium, Kluwer Academic Publishers, pp. 181–190.

  • Charney, J.G. and Stern, M.E.: 1962, On the instability of internal baroclinic jets in a a rotating atmosphere, J. Atmos. Sci. 19, 159–172.

    Google Scholar 

  • Chen, X. and Allen, S.E.: 1996, The influence of canyons on shelf currents: a theoretical study, J. Geophys. Res. 101(C8), 18043–18059.

    Google Scholar 

  • Cherubin, L., Carton, X.J., and Dritschel, D.G.: 1996: Vortex expulsion by a zonal coastal jet on a transverse canyon, Proceedings of the Second IWVF meeting, ESAIM Series, 1, 101–121.

    Google Scholar 

  • Corréard, S.M. and Carton, X.J.: 1999, Vertical alignment of geostrophic vortices: On the influence of the initial distribution of potential vorticity. In Sorensen, Hopfinger and Aubry (eds), Simulation and Identification of Organized Structures in flows, IUTAM/SIMFLOW Symposium; Kluwer Academic Publishers, pp. 191–200.

  • Charney, J.: 1971, Geostrophic turbulence, J. Atmos. Sci. 28, 1087–1095.

    Google Scholar 

  • Cho, J.Y.K. and Polvani, L.M.: 1996, The emergence of jets and vortices in freely evolving, shallow water turbulence on a sphere, Phys. Fluids 8(6), 1531–1552.

    Google Scholar 

  • Colin de Verdière, A.: 1992, On the southward motion of Mediterranean salt lenses, J. Phys. Oceanogr. 22, 413–420.

    Google Scholar 

  • Couder, Y. and Basdevant, C.: 1986, Experimental and numerical study of vortex couples in twodimensional flows, J. Fluid Mech. 173, 225–251.

    Google Scholar 

  • Creswell, G.R.: 1982, The coalescence of two east-Australian current warm-core eddies, Science 215, 161–164.

    Google Scholar 

  • Cushman-Roisin, B.: 1984, An exact analytical solution for a time-dependent, elliptical warm-core ring with outcropping interface, Ocean Modelling 59, unpublished manuscript, 5–6.

    Google Scholar 

  • Cushman-Roisin, B.: 1989, On the role of filamentation in the merging of anticyclonic lenses, J. Phys. Oceanogr. 19, 253–258.

    Google Scholar 

  • Cushman-Roisin, B.: 1994, Introduction to geophysical fluid dynamics, Prentice-Hall, 320 pp.

  • Cushman-Roisin, B., Heil, W.H., and Nof, D.: 1985, Oscillations and rotations of elliptical warmcore rings, J. Geophys. Res. 90(C6), 11756–11764.

    Google Scholar 

  • Cushman-Roisin, B., Chassignet, E.P., and Tang, B.: 1990, Westward motion of mesoscale eddies, J. Phys. Oceanogr. 20, 758–768.

    Google Scholar 

  • Cushman-Roisin, B. and Tang, B.: 1990, Geostrophic turbulence and the emergence of eddies beyond the radius of deformation, J. Phys. Oceanogr. 20, 97–113.

    Google Scholar 

  • D'Asaro, E.: 1988, Generation of submesoscale vortices: a new mechanism, J. Geophys. Res. 93, 6685–6693.

    Google Scholar 

  • Deem, G.S. and Zabusky, N.J.: 1978, Vortex waves: stationary “V states”, interactions, recurrence and breaking, Phys. Rev. Lett. 40(13), 859–862.

    Google Scholar 

  • Dewar, W.K. and Killworth, P.D.: 1995, On the stability of oceanic rings, J. Phys. Oceanogr. 25, 1467–1487.

    Google Scholar 

  • Dritschel, D.G.: 1985, The stability and energetics of corotating uniform vortices, J. Fluid Mech. 157, 95–134.

    Google Scholar 

  • Drazin, P.G. and Reid, W.H.: 1981, Hydrodynamic stability, Cambridge University Press, 527 pp.

  • Dritschel, D.G.: 1986, The nonlinear evolution or rotating configurations of uniform vorticity, J. Fluid Mech. 172, 157–182.

    Google Scholar 

  • Dritschel, D.G.: 1988, Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows, with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows, J. Fluid Mech. 191, 575–581.

    Google Scholar 

  • Dritschel, D.G.: 1989, Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modeling of vortex dynamics in two-dimensional, inviscid, incompressible flows, Comput. Phys. Rep. 10, 77–146.

    Google Scholar 

  • Dritschel, D.G.: 1990, The stability of elliptical vortices in an external straining flow, J. Fluid Mech. 210, 223–261.

    Google Scholar 

  • Dritschel, D.G.: 1993, Vortex properties of two-dimensional turbulence, Phys. Fluids, A,5(4), 984–997.

    Google Scholar 

  • Dritschel, D.G.: 1995, A general theory for two-dimensional vortex interactions, J. Fluid Mech. 293, 269–292.

    Google Scholar 

  • Dritschel, D.G.: 1998), On the persistance of non axisymmetric vortices in inviscid two-dimensional flows, J. Fluid Mech. 371, 141–155.

    Google Scholar 

  • Dritschel, D.G. and Waugh, D.: 1992, Quantification of the inelastic interaction of two asymmetric vortices in two-dimensional vortex dynamics, Phys. Fluids, A 4, 1737–1744.

    Google Scholar 

  • Dritschel, D.G. and Saravanan, R.: 1994, Three-dimensional quasi-geostrophic contour dynamics with an application to stratospheric vortex dynamics, Q. J. R. Met. Soc. 120, 1267–1297.

    Google Scholar 

  • Dritschel, D.G. and Ambaum, M.H.P.: 1997), A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields, Q. J. R. Met. Soc. 123, 1097–1130.

    Google Scholar 

  • Dritschel, D.G. and De la Torre Juárez, M.: 1996), The instability of tall columnar vortices in a quasi-geostrophic fluid, J. Fluid Mech. 328, 129–160.

    Google Scholar 

  • Dritschel, D.G. and Zabusky, N.J.: 1996, On the nature of vortex interactions and models in unforced nearly-inviscid two-dimensional turbulence, Phys. Fluids, A, 8(5), 1252–1256.

    Google Scholar 

  • Dritschel, D.G., de la Torre Juárez, M., and Ambaum, M.H.P.: 1999, On the three-dimensional vortical nature of atmospheric and oceanic flows, Phys. Fluids 11(6), 1512–1520.

    Google Scholar 

  • Farge, M. and Sadourny, R.: 1990), Wave-vortex dynamics in rotating shallow-water, J. Fluid Mech. 206, 433–462.

    Google Scholar 

  • Flierl, G.R.: 1979, Baroclinic solitary waves with radial symmetry, Dyn. Atmos. Oceans, 3, 15–38.

    Google Scholar 

  • Flierl, G.R.: 1987, Isolated eddy models in geophysics, Ann. Rev. Fluid Mech. 19, 493–530.

    Google Scholar 

  • Flierl, G.R.: 1988, On the instability of geostrophic vortices, J. Fluid Mech. 197, 349–388.

    Google Scholar 

  • Flierl, G.R., Larichev, V.D., McWilliams, J.C., and Reznik, G.M.: 1980, The dynamics of baroclinic and barotropic solitary eddies, Dyn. Atmos. Oceans 5, 1–41.

    Google Scholar 

  • Flierl, G.R., Stern, M.E., and Whitehead, J.A.: 1983, The physical significance of modons: laboratory experiments and general integral constraints, Dyn. Atmos. Oceans 7, 233–263.

    Google Scholar 

  • Flierl, G.R., Malanotte-Rizzoli, P., and Zabusky, N.J.: 1987, Nonlinear waves and coherent vortex structures in barotropic beta-plane jets, J. Phys. Oceanogr. 17(9), 1408–1438.

    Google Scholar 

  • Ford, R.: 1994, The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water, J. Fluid Mech. 280, 303–334.

    Google Scholar 

  • Gent, P.R. and McWilliams, J.C.: 1986, The instability of barotropic circular vortices, Geophys. Astrophys. Fluid Dyn. 35, 209–233.

    Google Scholar 

  • Griffiths, R.W. and Hopfinger, E.J.: 1987, Coalescing of geostrophic vortices, J. Fluid Mech. 178, 73–97.

    Google Scholar 

  • Griffiths, R.W., Killworth, P.D., and Stern, M.E.: 1982, Ageostrophic instability of ocean currents, J. Fluid Mech. 117, 343–377.

    Google Scholar 

  • Haugan, P.M., Johannessen, J.A., Lygre, K., Sandven, S., and Johannessen, O.M.: 1989, Simulation experiments of the evolution of mesoscale circulation features in the Norwegian coastal current. In J.C.J. Nihoul and B.M. Jamart (eds), Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, Elsevier Oceanographic Series, 50, 303–313.

  • Helfrich, K.R. and Send, U.: 1988, Finite-amplitude evolution of two-layer geostrophic vortices, J. Fluid Mech. 197, 331–348.

    Google Scholar 

  • Herring, J.R.: 1977, On the statistical theory of two-dimensional topographic turbulence, J. Atmos. Sci. 34, 1731–1750.

    Google Scholar 

  • Herring, J.R.: 1980, Statistical theory of quasi-geostrophic turbulence, J. Atmos. Sci. 37, 969–977.

    Google Scholar 

  • Hickey, B.M.: 1994, Coastal submarine canyons. In P. Muller (ed.), Aha' Huliko'a winter workshop on flow-topography interactions, University of Hawaii, Honolulu, pp. 10.

    Google Scholar 

  • Holland, W.R. and Haidvogel, D.B.: 1980, A parameter study of the mixed instability of idealized ocean currents, Dyn. Atmos. Oceans 4, 185–215.

    Google Scholar 

  • Holloway, G.: 1978, A spectral theory of nonlinear barotropic motion above irregular topography, J. Phys. Oceanogr. 8, 414-427.

    Google Scholar 

  • Hogg, N.G. and Stommel, H.M.: 1985, The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow, Proc. R. Soc. Lond., A, 397, 1–20.

    Google Scholar 

  • Hopfinger, E.J. and van Heijst, G.J.F.: 1993, Vortices in rotating fluids, Ann. Rev. Fluid Mech., 25, 241–289.

    Google Scholar 

  • Hua, B.L.: 1988a, The internal barotropic instability of surface-intensified eddies. Part I. Generalized theory for isolated eddies, J. Phys. Oceanogr. 18(1), 40–55.

    Google Scholar 

  • Hua, B.L.: 1988b), The internal barotropic instability of surface-intensified eddies. Part II. Modeling of the Tourbillon site, J. Phys. Oceanogr. 18(1), 56–71.

    Google Scholar 

  • Hua, B.L.: 1994, The conservation of potential vorticity along Lagrangian trajectories in simulations of eddy-driven flows, J. Phys. Oceanogr. 24, 498–508.

    Google Scholar 

  • Hua, B.L. and Haidvogel, D.B.: 1986, Numerical simulation of the vertical structure of quasigeostrophic turbulence, J. Atmos. Sci. 43(23), 2923–2936.

    Google Scholar 

  • Hua, B.L. and Klein, P.: 1997, An exact criterion for the stirring properties of nearly two-dimensional turbulence, Physica D, in press.

  • Hughes, R.L., Ofosu, K.N., and Hickey, B.M.: 1990, On the behavior of boundary undercurrents near canyons, J. Geophys. Res. 95(C11), 20259–20266.

    Google Scholar 

  • Ikeda, M.: 1981, Meanders and detached eddies of a strong eastward-flowing jet using a two-layer quasi-geostrophic model, J. Phys. Oceanogr. 11(4), 525–540.

    Google Scholar 

  • Ikeda, M. and Apel, J.R.: 1981, Mesoscale eddies detached from spatially-growing meanders in an eastward-flowing oceanic jet using a two-layer quasi-geostrophic model, J. Phys. Oceanogr. 11(12), 1638–1661.

    Google Scholar 

  • Kamenkovich, V.M., Koshlyakov, M.N., and Monin, A.S.: 1986, Synoptic eddies in the ocean. EFM, D. Reidel Publishing Company, 433 pp.

  • Käse, R.H., Beckmann, A., and Hinrichsen, H.H.: 1989, Observational evidence of salt lens formation in the Iberian basin, J. Geophys. Res. 94(C4), 4905–4912.

    Google Scholar 

  • Käse, R.H. and Zenk, W.:1986, Reconstructed Mediterranean salt lens trajectories, J. Phys. Oceanogr. 17, 158–163.

    Google Scholar 

  • Käse, R.H. and Zenk, W.: 1996, Structure of the Mediterranean water and meddy characteristics in the northeastern Atlantic. In W. Krauss (ed.), The warmwatersphere of the north Atlantic ocean, Gebrüder Borntraeger, Berlin, pp. 365–395.

    Google Scholar 

  • Kida, S.: 1981, Motion of an elliptic vortex in a uniform shear flow, J. Phys. Soc. Japan 50, 3517–3520.

    Google Scholar 

  • Kielmann, J. and Käse, R.H.: 1987, Numerical modeling of meander and eddy formation in the Azores current frontal zone, J. Phys. Oceanogr. 17, 529–541.

    Google Scholar 

  • Killworth, P.D.: 1983, Long-wave instability of an isolated front, Geophys. Astrophys. Fluid Dyn. 25, 235–258.

    Google Scholar 

  • Killworth, P.D. and Stern, M.E.: 1983, Instabilities on density-driven boundary currents and fronts, Geophys. Astrophys. Fluid Dyn. 22, 1–28.

    Google Scholar 

  • Killworth, P.D., Paldor, N., and Stern, M.E.: 1984, Wave propagation and growth on a surface front in a two-layer geostrophic current, J. Mar. Res. 42(4), 761–785.

    Google Scholar 

  • Klinck, J.M.: 1988, The influence of a narrow transverse canyon on initially geostrophic flow, J. Geophys. Res. 93(C1), 509–515.

    Google Scholar 

  • Klinck, J.M.: 1996, Circulation near submarine canyons: a modelling study, J. Geophys. Res. 101(C1), 1211–12223.

    Google Scholar 

  • Klinger, B.A.: 1993, Gyre formation at a corner by rotating barotropic coastal flows along a slope, Dyn. Atmos. Oceans, 19, 27–63.

    Google Scholar 

  • Klinger, B.A.: 1994a, Inviscid current separation from rounded capes, J. Phys. Oceanogr. 24, 1805–1811.

    Google Scholar 

  • Klinger, B.A.: 1994b, Baroclinic eddy generation at a sharp corner in a rotating system, J. Geophys. Res. 99(C6), 12515–12531.

    Google Scholar 

  • Kloosterziel, R.C. and Carnevale, G.F.: 1992, Formal stability of circular vortices, J. Fluid Mech. 242, 249–278.

    Google Scholar 

  • Kraichnan, R.H.: 1971, An almost-Markovian Galilean-invariant turbulence model, J. Fluid Mech. 47, 513–524.

    Google Scholar 

  • Kubokawa, A.: 1988, Instability and nonlinear evolution of a density-driven coastal current with a surface front in a two-layer ocean, Geophys. Astrophys. Fluid Dyn. 40, 195–223.

    Google Scholar 

  • Kundu, P.K.: 1990, Fluid mechanics, Academic Press, 638 pp.

  • Lacasce, J.: 1998, A geostrophic vortex over a slope, J. Phys. Oceanogr. 28, 2362–2381.

    Google Scholar 

  • Lamb, Sir H.: 1932, Hydrodynamics, Cambridge University Press, 738 pp.

  • Larichev, V.D. and McWilliams, J.C.: 1991, Weakly decaying turbulence in an equivalent-barotropic model, Phys. Fluids, A, 3, 938–950.

    Google Scholar 

  • Legg, S.: 1992, Open ocean deep convection: the spreading phase, Ph.D. Thesis, University of London, 185 pp.

  • Legras, B.: 1991, Eddies in geophysical flows, Lecture Notes of the GFD Summer School, Roscoff, France, 147–165.

    Google Scholar 

  • Legras, B., Santangelo, P., and Benzi, R.: 1988, High-resolution numerical experiments for forced two-dimensional turbulence, Europhys. Lett. 5(1), 37–42.

    Google Scholar 

  • Legras, B. and Dritschel, D.G.: 1993, Vortex stripping and the generation of high vorticity gradients in two-dimensional flows, Appl. Sci. Res. 51, 445–456.

    Google Scholar 

  • Leith, C.E.: 1971, Atmospheric predictability and two-dimensional turbulence, J. Atmos. Sci., 28, 145–161.

    Google Scholar 

  • Leith, C.E.: 1981, Minimum-enstrophy vortices, Phys. Fluids 7, 1388–1395.

    Google Scholar 

  • Lesieur, M.: 1983, Introduction a la turbulence bi-dimensionnelle, J. Meca. Theor. Appl. N. Special, 5–20.

  • Lin, J.T.: 1972), Relative dispersion in the enstrophy cascading inertial range of homogeneous two dimensional turbulence, J. Atmos. Sci. 29, 394–396.

    Google Scholar 

  • Madelain, F.: 1970, Influence de la topographie de fond sur l'écoulement méditerranéen entre le détroit de Gibraltar et le cap Saint Vincent, Cahiers Océanogaphiques 22, 43–61.

    Google Scholar 

  • Mariotti, A., Legras, B., and Dritschel, D.G.: 1994, Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6(12), 3954-3962.

    Google Scholar 

  • Marshall J.S. and Parthasarathy, B.: 1993, Tearing of an aligned vortex by a current difference in two-layer quasi-geostrophic flow, J. Fluid Mech. 255, 157–182.

    Google Scholar 

  • McWilliams, J.C.: 1983, Interaction of isolated vortices. II. Modon generation by monopole collisions, Geophys. Astrophys. Fluid Dyn. 24, 1–22.

    Google Scholar 

  • McWilliams, J.C.: 1984, The emergence of isolated coherent vortices in turbulent flows, J. Fluid Mech. 146, 21–43.

    Google Scholar 

  • McWilliams, J.C.: 1985, Submesoscale coherent vortices in the ocean, Rev. Geophys. 23, 165–182.

    Google Scholar 

  • McWilliams, J.C.: 1988, Vortex generation through balanced adjustment, J. Phys. Oceanogr. 18, 1178–1192.

    Google Scholar 

  • McWilliams, J.C.: 1989, Statistical properties of decaying geostrophic turbulence, J. Fluid Mech. 198, 199-230.

    Google Scholar 

  • McWilliams, J.C.: 1990a, The vortices of two-dimensional turbulence, J. Fluid Mech. 219, 361–385.

    Google Scholar 

  • McWilliams, J.C.: 1990b, The vortices of geostrophic turbulence, J. Fluid Mech. 219, 387–404.

    Google Scholar 

  • McWilliams, J.C.: 1990c), A demonstration of the suppression of turbulent cascades by coherent vortices in two-dimensional turbulence, Phys. Fluids, A, 2(4), 547–552.

    Google Scholar 

  • McWilliams, J.C.: 1991, Geostrophic vortices. In: Nonlinear Topics in Ocean Physics, Proceedings of the International School of Physics “Enrico Fermi”, Course CIX, North Holland, 5–50.

    Google Scholar 

  • McWilliams, J.C. and Flierl, G.R.: 1979, On the evolution of isolated nonlinear vortices, J. Phys. Oceanogr. 9, 1155–1182.

    Google Scholar 

  • McWilliams, J.C. and Zabusky, N.J.: 1982, Interaction of isolated vortices. I. Modons colliding with modons, Geophys. Astrophys. Fluid Dyn. 19, 207–227.

    Google Scholar 

  • McWilliams, J.C., Weiss, J.B., and I. Yavneh, I.: 1994, Anisotropy and coherent structures in planetary turbulence, Science 264, 410–413.

    Google Scholar 

  • McWilliams, J.C. and Weiss, J.B.: 1994 Anisotropic geophysical vortices, Chaos 4(2), 305–311.

    Google Scholar 

  • Meacham, S.P.: 1992, Quasi-geostrophic, ellipsoidal vortices in a stratified fluid, Dyn. Atmos. Oceans 16, 189–223.

    Google Scholar 

  • Meacham, S.P.: 1993, The merger of three-dimensional, quasi-geostrophic vortices in a stratified fluid. Submitted to Phys. Fluids, A.

  • Meacham, S.P., Flierl, G.R., and Send, U.: 1990, Vortices in shear, Dyn. Atmos. Oceans 14, 333–386.

    Google Scholar 

  • Melander, M.V., Zabusky, N.J., and Styczek, A.S.: 1986, A moment model for vortex interactions of the two-dimensional Euler equations. Part I. Computational validation of a Hamiltonian elliptical representation, J. Fluid Mech. 167, 95–115.

    Google Scholar 

  • Melander, M.V., McWilliams, J.C., and Zabusky, N.J.: 1987, Axisymmetrization and vorticity gradient intensification of an isolated two-dimensional vortex through filamentation, J. Fluid Mech. 178, 137–159.

    Google Scholar 

  • Melander, M.V., Zabusky, N.J., and McWilliams, J.C.: 1987, Asymmetric vortex merger in two dimension: Which vortex is “victorious”? Phys. Fluids, A, 30(9), 2610–2612.

    Google Scholar 

  • Melander, M.V., Zabusky, N.J., and McWilliams, J.C.: 1988, Symmetric vortex merger in two dimensions: causes and conditions, J. Fluid Mech. 195, 303–340.

    Google Scholar 

  • Mied, R. and Lindemann, G.J.: 1984, Mass transfer between Gulf-Stream rings, J. Geophys. Res. 89(C4), 6365–6372.

    Google Scholar 

  • Mied, R., McWilliams, J.C., and Lindemann, G.J.: 1991, The generation and evolution of mushroomlike vortices, J. Phys. Oceanogr. 21, 489–510.

    Google Scholar 

  • Miller, J.: 1990, Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett. 65(17), 2137–2140.

    Google Scholar 

  • Montgomery, D. and Joyce, G.: 1974, Statistical mechanics of negative temperature states, Phys. Fluids 17, 1139–1145.

    Google Scholar 

  • Moore, D.W. and Saffmann, P.G.: 1971, Structure of a line vortex in an imposed strain. In J.H. Olsen, A. Goldburg and M. Rogers (eds), Aircraft wake turbulence and its detection, Plenum, New York, 339–354.

    Google Scholar 

  • Morel, P. and Larcheveque, M.: 1974, Relative dispersion of constant level balloons in the 200 mb general circulation, J. Atmos Sci. 31, 2189–2195.

    Google Scholar 

  • Morel, Y.G.: 1995a, Etude des deplacements et de la dynamique des tourbillons geophysiques; application aux meddies. These de Doctorat de l'Universite Joseph Fourier, Grenoble, France, 155 pp.

    Google Scholar 

  • Morel, Y.G.: 1995b, The influence of an upper thermocline current on intrathermocline eddies, J. Phys. Oceanogr. 25, 3247–3252.

    Google Scholar 

  • Morel, Y.G. and Carton, X.J.: 1994, Multipolar vortices in two-dimensional incompressible flows, J. Fluid Mech. 267, 23–51.

    Google Scholar 

  • Morel, Y.G. and McWilliams, J.C.: 1997, Evolution of isolated interior vortices in the ocean, J. Phys. Oceanogr. 27, 727–748.

    Google Scholar 

  • Morikawa, G.K. and Swenson, E.V.: 1971, Interacting motion of rectilinear geostrophic vortices, Phys. Fluids 14, 1058–1073.

    Google Scholar 

  • Muller, P. and Frankignoul, C.: 1981, Direct atmospheric forcing of geostrophic eddies, J. Phys. Oceanogr. 11, 287–308.

    Google Scholar 

  • Nof, D.: 1981, On the β-induced movement of isolated baroclinic eddies, J. Phys. Oceanogr. 11, 1662–1672.

    Google Scholar 

  • Nof, D.: 1983, The translation of isolated cold eddies on a sloping bottom, J. Mar. Res. 30(2A), 171–182.

    Google Scholar 

  • Nof, D.: 1990, The breakup of dense filaments, J. Phys. Oceanogr. 20, 880–889.

    Google Scholar 

  • Nof, D.: 1991, Lenses generated by intermittent currents, Deep-Sea Res. 38(3), 325–345.

    Google Scholar 

  • Olson, D.B.: 1980, The physical oceanography of two rings observed by the cyclonic ring experiment. Part II: Dynamics, J. Phys. Oceanogr. 10, 514–528.

    Google Scholar 

  • Olson, D.B.: 1991, Rings in the ocean, Ann. Rev. Earth Planet. Sci. 19, 283–311.

    Google Scholar 

  • Olson, D.B., Schmitt, R.W., Kennelly, M., and Joyce, T.M.: 1985, A two-layer diagnostic model of the long-term physical evolution of warm-core ring 82B, J. Geophys. Res. 90(C5), 8813–8822.

    Google Scholar 

  • Orlandi, P. and van Heijst, G.J.F.: 1992, Numerical simulations of tripolar vortices in 2D flows, Fluid Dyn. Res. 9, 179–206.

    Google Scholar 

  • Ou, H.W. and De Ruijter, W.P.M.: 1986, Separation of an inertial boundary current from a curved coastline, J. Phys. Oceanogr. 16, 280–289.

    Google Scholar 

  • Overman, II, E.A. and Zabusky, N.J.: 1982 Evolution and merger of isolated vortex structures, Phys. Fluids 25(8), 1297–1305.

    Google Scholar 

  • Pedlosky, J.: 1987, Geophysical Fluid Dynamics, Springer Verlag, 710 pp.

    Google Scholar 

  • Paillet, J., LeCann, B., Serpette, A., More, Y., and Carton, X.: 1999, Real-time tracking of a Galician meddy. To appear in Geophys. Res. Lett..

  • Paldor, N.: 1983, Stability and stable modes of coastal fronts, Geophys. Astrophys. Fluid Dyn. 27, 217–228.

    Google Scholar 

  • Paldor, N.: 1987, Instabilities of a two-layer coupled front,Deep-Sea Res. 34(9), 1525–1539.

    Google Scholar 

  • Paldor, N. and Nof, D.: 1990, Linear instability of an anticyclonic vortex in a two-layer ocean, J. Geophys. Res. 95(C10), 18075–18079.

    Google Scholar 

  • Pavia, E.G. and Cushman-Roisin, B.: 1990, Merging of frontal eddies, J. Phys. Oceanogr. 20, 1886–1906.

    Google Scholar 

  • Pedreira-Dubert, J.M.: 1993, Le swoddy est-il un heton? Rapport de stage de DEA d'Océanographie de l'Université de Bretagne Occidentale, Brest, France.

  • Pichevin, T. and Nof, D.: 1996, The eddy cannon, Deep-Sea Res. I 43(9), 1475–1507.

    Google Scholar 

  • Pingree, R. and LeCann, B.: 1992, Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the southern Bay of Biscay in 1990, Deep-Sea Res. 39, 1147–1175.

    Google Scholar 

  • Pingree, R. and LeCann, B.: 1993, A shallow meddy (Smeddy) from the secondary Mediterranean salinity maximum, J. Geophys. Res. 98(C), 20169–10185.

    Google Scholar 

  • Polvani, L.M.: 1988, Geostrophic vortex dynamics, Ph.D. thesis, MIT/WHOI,WHOI-88-48, 221 pp.

  • Polvani, L.M.: 1991, Two-layer geostrophic vortex dynamics. Part 2. Alignment and two-layer Vstates, J. Fluid Mech. 225, 241–270.

    Google Scholar 

  • Polvani, L.M., Flierl, G.R., and Zabusky, N.J.: 1989a, Filamentation of unstable vortex structures via separatrix crossing: a quantitative estimate of onset time, Phys. Fluids, A, 1(2), 181–184.

    Google Scholar 

  • Polvani, L.M., Zabusky, N.J., and Flierl, G.R.: 1989b, Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-States and merger, J. Fluid Mech. 205, 215–242.

    Google Scholar 

  • Polvani, L.M. and Carton, X.J.: 1990, The tripole: A new coherent vortex structure of incompressible 2D flows, it Geophys. Astrophys. Fluid Dyn. 51, 87–102.

    Google Scholar 

  • Polvani, L.M., McWilliams, J.C., Spall, M.A., and Ford, R.: 1994, The coherent structures of shallow-water turbulence: Deformation radius effects, cyclone/anticyclone asymmetry and gravity wave generation, Chaos 4(2), 177–186.

    Google Scholar 

  • Prater, M.D. and Sanford, T.B.: 1994, A meddy off Cape St Vincent. Part I; Description, J. Phys. Oceanogr. 24, 1572–1586.

    Google Scholar 

  • Reznik, G.M. and Dewar, W.K.: 1994, An analytical theory of distributed axisymmetric vortices on the β-plane, J. Fluid Mech. 269, 301–321.

    Google Scholar 

  • Rhines, P.B.: 1979, Geostrophic turbulence, Ann. Rev. Fluid Mech. 11, 401–441.

    Google Scholar 

  • Richardson, P.L.: 1993, Tracking ocean eddies, American Scientist 81, 261–272.

    Google Scholar 

  • Richardson, P.L., Walsh, D., Armi, L., Schröder, M., and Price, J.F.: 1989, Tracking three meddies with SOFAR floats, J. Phys. Oceanogr. 19, 371–383.

    Google Scholar 

  • Ring Group (the): 1981, Gulf-Stream cold-core rings: their physics, chemistry and biology, Science 212(4499), 1091–1100.

    Google Scholar 

  • Ripa, P.: 1985, On the stability of Cushman-Roisin's warm eddy solution, Ocean Modelling, 63, unpublished manuscript, 3–7.

    Google Scholar 

  • Ripa, P.: 1989, On the stability of ocean vortices. In J.C.J. Nihoul and B.M. Jamart (eds), Mesoscale/ Synoptic Coherent Structures in Geophysical Turbulence, Elsevier Oceanographic Series, 50, 167–179.

  • Ripa, P.: 1991, General stability conditions for a multi-layer model, J. Fluid Mech. 222, 119–137.

    Google Scholar 

  • Ripa, P.: 1992, Instability of a solid-body rotating vortex in a two-layer model, J. Fluid Mech. 242, 395–417.

    Google Scholar 

  • Robinson, A.R.: 1983, Eddies in marine science, Springer Verlag, 609 pp.

  • Robert, R. and Sommeria, J.: 1991, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech. 229, 291–310.

    Google Scholar 

  • Robert, R. and Sommeria, J.: 1992, Relaxation towards a statistical equilibrium state in twodimensional perfect fluid dynamics, Phys. Rev. Lett. 69(19), 2776–2779.

    Google Scholar 

  • Saffman P.G. and Szeto, R.: 1980, Equilibrium shape of a pair of equal uniform vortices, Phys. Fluids 23(12), 2339–2342.

    Google Scholar 

  • Sakai, S.: 1989, Rossby–Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves, J. Fluid Mech. 202, 149–176.

    Google Scholar 

  • Salmon, R.: 1980, Baroclinic instability and geostrophic turbulence, Geophys. Astrophys. Fluid Dyn. 15, 167–211.

    Google Scholar 

  • Santangelo, P., Benzi, R., and Legras, B.: 1989, The generation of vortices in high-resolution, twodimensional decaying turbulence and the influence of initial conditions on the breaking of selfsimilarity, Phys. Fluids, A, 1(6), 1027–1034.

    Google Scholar 

  • Schultz-Tokos, K., Hinrichsen, H.H., and Zenk, W.: 1994, Merging and migration of two meddies, J. Phys. Oceanogr. 24, 2129–2141.

    Google Scholar 

  • Shapiro, G.I., Zenk, W., Meschanov, S.L., and Schultz-Tokos, K.L.: 1995, Self-similarity of the meddy family in the eastern north Atlantic, Oceanologica Acta 18, 29–42.

    Google Scholar 

  • Sokolovskyi, M.A.: 1997, Stability of an axisymmetric three-layer vortex, Izvestiya Atm. Ocean. Phys. 33(1), 16–26.

    Google Scholar 

  • Spall, M.A.: 1995, Frontogenesis, subduction and cross-front exchange at upper-ocean fronts, J. Geophys. Res. 100(C2), 2543–2557.

    Google Scholar 

  • Sutyrin G.G. and Flierl, G.R.: 1994, Intense vortex motion on the beta-plane: development of the beta-gyres, J. Atmos. Sci. 51, 773–790.

    Google Scholar 

  • Sutyrin G.G. and Morel, Y.G.: 1997, Intense vortex motion in a stratified fluid on the beta-plane: an analytical theory and its validation, J. Fluid Mech. 336, 203–220.

    Google Scholar 

  • Sutyrin G.G., McWilliams, J.C., and Saravanan, R.: 1997, Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores, Preprint, 27 pp.

  • Swaters, G.E.: 1991, On the baroclinic instability of cold-core coupled density fronts on a sloping continental shelf, J. Fluid Mech. 224, 361–382.

    Google Scholar 

  • Swenson, M.: 1987, Instability of equivalent-barotropic riders, J. Phys. Oceanogr. 17, 492–506.

    Google Scholar 

  • Thierry, V. and Morel, Y.: 1999, Influence of a strong bottom slope on the evolution of a surface intensified vortex, J. Phys. Oceanogr. 29, 911–924.

    Google Scholar 

  • Thomson, L. and Young, W.R.: 1989, An upper bound on the size of sub-mesoscale coherent vortices, J. Phys. Oceanogr. 19, 233–237.

    Google Scholar 

  • Tréguier, A.M. and Hua, B.L.: 1987, Oceanic quasi-geostrophic turbulence forced by stochastic wind fluctuations, J. Phys. Oceanogr. 17(3), 397–411.

    Google Scholar 

  • Tréguier, A.M. and Hua, B.L.: 1988, Influence of bottom topography on stratified quasi-geostrophic turbulence in the ocean, Geophys. Astrophys. Fluid Dyn. 43, 265–305.

    Google Scholar 

  • Tréguier, A.M. and Klein, P.: 1994, Instability of wind-forced inertial oscillations, J. Fluid Mech. 275, 323–349.

    Google Scholar 

  • Tychensky, A. and Carton, X.J.: 1998, Hydrological and dynamical characterization of meddies in the Azores region: a paradigm for baroclinic vortex dynamics. To appear in J. Geophys. Res.

  • Valcke, S. and Verron, J.: 1993, On interactions between two finite-core hetons, Phys. Fluids, A, 5(8), 2058–2060.

    Google Scholar 

  • Valcke, S. and Verron, J.: 1996, Cyclone-anticyclone asymmetry in the merging process. Dyn. Atmos. Oceans 24, 227–236.

    Google Scholar 

  • Valcke, S. and Verron, J.: 1997, Interactions of baroclinic isolated vortices: the dominant effect of shielding, J. Phys. Oceanogr. 27, 524-541.

    Google Scholar 

  • van Heijst, G.J.F., Kloosterziel, R.C., and Williams, C.W.M.: 1991, Laboratory experiments on the tripolar vortex in a rotating fluid, J. Fluid Mech. 225, 301–331.

    Google Scholar 

  • Verron, J., Hopfinger, E.J., and McWilliams, J.C.: 1990, Sensitivity to initial conditions in the merging of two-layer baroclinic vortices, Phys. Fluids A 2, 886–889.

    Google Scholar 

  • Verron, J. and Valcke, S.: 1994, Scale-dependent merging of baroclinic vortices, J. Fluid Mech. 264, 81–106.

    Google Scholar 

  • Viera, F.: 1995, On the alignment and axisymmetrization of a vertically-tilted geostrophic vortex, J. Fluid Mech. 289, 29–50.

    Google Scholar 

  • Walsh, D.: 1995, A model of a mesoscale lens in a large-scale shear. Part I. Linear calculations, J. Phys. Oceanogr. 25, 735–746.

    Google Scholar 

  • Walsh, D. and Pratt, L.J.: 1995, The interaction of a pair of point potential vortices in a uniform shear, Dyn. Atmos. Oceans 22, 135–160.

    Google Scholar 

  • Walsh, D., Richardson, P.L., and Lynch, J.: 1996, Observations of tilting meddies, J. Phys. Oceanogr. 26, 1023–1038.

    Google Scholar 

  • Weiss, J.: 1981, The dynamics of enstrophy transfer in two-dimensional hydrodynamics. LJI-Tn-81-121 report, La Jolla Institute, La Jolla, CA.

    Google Scholar 

  • Weiss, J.B. and McWilliams, J.C.: 1993, Temporal scaling behavior of two-dimensional turbulence, Phys. Fluids, A, 5, 608–621.

    Google Scholar 

  • Wu, H.M., Overman, E.A., and Zabusky, N.J.: 1984, Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-States with limiting cases. I. Numerical algorithms and results, J. Comp. Phys. 53, 42–71.

    Google Scholar 

  • Yasuda, I.: 1995, Geostrophic vortex merger and streamer development in the ocean with special reference to the merger of Kuroshio warm-core rings, J. Phys. Oceanogr. 25, 979–996.

    Google Scholar 

  • Yasuda, I. and Flierl, G.R.: 1995, Two-dimensional asymmetric vortex merger: Contour dynamics experiments, J. Oceanogr. 51, 145–170.

    Google Scholar 

  • Yasuda, I. and Flierl, G.R.: 1997, Two-dimensional asymmetric vortex merger: merger dynamics and critical merger distance, Dyn. Atmos. Oceans, 26, 159–181.

    Google Scholar 

  • Yavneh, I., Shchepetkin, A.F., McWilliams, J.C., and Graves, L.P.: 1997, Multigrid solution of rotating stably stratified flows: the balance equations and their turbulent dynamics, J. Comp. Phys. 136, 245–262.

    Google Scholar 

  • Zenk, W.: 1975, On the Mediterranean outflow west of Gibraltar, “Meteor” Forsch. Ergebnisse, A 16, 15–22.

    Google Scholar 

  • Zenk, W., Schultz-Tokos K.L., and Boebel, O.: 1992, New observations of meddy movement south of the Tejo plateau, Geophys. Res. Lett. 12(24), 2389–2392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carton, X. Hydrodynamical Modeling Of Oceanic Vortices. Surveys in Geophysics 22, 179–263 (2001). https://doi.org/10.1023/A:1013779219578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013779219578

Navigation