[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Maximal state independent approximations to minimal real change

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper is devoted to the problem of consistency enforcement for logical databases. The enforcement methods we propose compute the minimal real change in a given DB state, which is sufficient to accomplish the input update and preserve the integrity constraints (IC). For IC expressed in the form of a generalized logic program, this problem is proven to be hard. Meanwhile, we show that it is solvable in linear time under partial interpretations. We propose a method of computing DB state independent correct expansions of the input update and simultaneous optimization of IC with respect to this expansion. We show that under partial interpretations, optimal pairs (greatest correct update expansion/simplest equivalent IC) always exist and can be incrementally computed in square time. This partial solution being correct with respect to the total interpretations, we use it as an approximation in the total case. Moreover, for the class of IC without negation in clause bodies, we prove that this approximation constitutes the optimal pair (greatest correct update expansion/simplest equivalent IC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Abiteboul, Updates a new Frontier, in: Proc. of the Second International Conference on the Theory of Databases, ICDT'88, Lecture Notes in Computer Science, Vol. 326 (1988) pp. 1-18.

    Google Scholar 

  2. C.E. Alchourón, P. Gärdenfors and D. Makinson, On the logic of theory change: partial meet contraction and revision functions, Journal of Symbolic Logic 50 (1985) 510-530.

    Google Scholar 

  3. J.J. Alferes and L.M. Pereira, Update-programs can update programs, in: Second International Workshop, NMELP'96. Selected Papers, eds. J. Dix, L.M. Pereira and T.C. Przymusinski, Lecture Notes in Computer Science, Vol. 1216 (1997) pp. 110-131.

  4. P. Atzeni and R. Torlone, Updating datalog databases, in: Proc. of the East/West Database Workshop, Lecture Notes in Computer Science, Vol. 554 (1990) pp. 347-362.

    Google Scholar 

  5. A. Borgida, Language features for flexible handling of exceptions in information systems, ACM Transactions on Database Systems 10 (1985) 563-603.

    Google Scholar 

  6. A.J. Bonner and M. Kifer, An overview of transaction logic, Theoretical Computer Science 133 (2) (1994) 205-265.

    Google Scholar 

  7. U. Dayal, E. Hanson and J. Widom, Active database systems, in: Modern Database Systems, ed. W. Kim (Addison-Wesley, 1995) pp. 436-456.

  8. H. Decker, An extension of SLD by abduction and integrity maintenance for view updating in deductive databases, in: Proc. of the 1996 International Conference on Logic Programming (MIT Press, 1996) pp. 157-169.

  9. M. Dekhtyar, A. Dikovsky and N. Spyratos, On conservative enforced updates, in: Proceedings of 4th International Conference, LPNMR'97, Dagstuhl Castle, Germany, eds. J. Dix, U. Furbach and A. Nerode, Lecture Notes in Computer Science, Vol. 1265 (1997) pp. 244-257.

  10. M. Dekhtyar, A. Dikovsky and N. Spyratos, On logically justified updates, in: Proc. of the 1998 Joint International Conference and Symposium on Logic Programming, ed. J. Jaffar (MIT Press, 1998) pp. 250-264.

  11. M. Dekhtyar, A. Dikovsky, S. Dudakov and N. Spyratos, Monotone expansion of updates in logical databases, in: Proc. of 5th International Conference LPNMR'99, Lecture Notes in Artificial Intelligence, Vol. 1730 (1999) pp. 132-147.

    Google Scholar 

  12. M. Dekhtyar, A. Dikovsky, S. Dudakov and N. Spyratos, Maximal expansions of database updates, in: Foundations of Information and Knowledge Systems, FoIKS 2000, Lecture Notes in Computer Science, Vol. 1762 (2000) pp. 72-87. [13] M. Dekhtyar, A. Dikovsky and S. Dudakov, On complexity of updates through integrity constraints, in: Proc. of the First Int. Conf. on Computational Logic (CL 2000), Lecture Notes in Artificial Intelligence, Vol. 1861 (2000) pp. 867-881.

    Google Scholar 

  13. T. Eiter and G. Gottlob, On the complexity of propositional knowledge base revision, updates, and counterfactuals, Artificial Intelligence 57 (1992) 227-270.

    Google Scholar 

  14. K. Eshghi and R.A. Kowalski, Abduction compared with negation by failure, in: Proc. of the 1989 International Conference on Logic Programming (1989).

  15. J.A. Fernandez, J. Grant and J. Minker, Model-theoretic approach to view updates in deductive databases, Journal of Automated Reasoning 17 (1996) 171-197.

    Google Scholar 

  16. R. Fagin, G. Kuper, J. Ullman and M.Y. Vardi, Updating logical databases, Advances in Computing Research 3 (1986) 1-18.

    Google Scholar 

  17. J. Grant, J. Horty, J. Lobo and J. Minker, View updates in stratified disjunctive databases, Journal of Automated Reasoning 11 (1993) 249-267.

    Google Scholar 

  18. M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: Proc. of the 7th Intern. Conf. on Logic Programming (MIT Press, 1990) pp. 579-597.

  19. A. Guessoum and J.W. Lloyd, Updating knowledge bases, New Generation Computing 8 (1990) 71-89.

    Google Scholar 

  20. H.F.M. Alves, D. Laurent, N. Spyratos and D. Stamate, Update rules and revision programs, Rapport de Recherche, Université de Paris-Sud, Centre d'Orsay, LRI, 1010 (December 1995).

  21. A.C. Kakas and P. Mancarella, Database updates through abduction, in: Proc. 16th VLBD Conference (1990) pp. 650-661.

  22. H. Katsuno and A.O. Mendelzon, Propositional knowledge base revision and minimal change, Artifi-cial Intelligence 52 (1991) 253-294.

    Google Scholar 

  23. J.W. Lloyd, Foundations of Logic Programming, 2nd extended edn. (Springer, 1993).

  24. J. Lobo and G. Trajcevski, Minimal and consistent evolution of knowledge bases, Journal of Applied Non-Classical Logics 7 (1-2) (1997) 117-146.

    Google Scholar 

  25. E. Mayol, A. Pastor, E. Teniente and T. Urpi, FOLRE: a deductive database system for the integrated treatment of updates, in: Proc. of 3rd International Workshop on Rules in Database Systems, RIDS'97, eds. A. Geppef and M. Bernadtsson, Lecture Notes in Computer Science, Vol. 1312 (1997) pp. 35-50.

  26. V.W. Marek and M. TruszciŇsky, Revision programming, database updates and integrity constraints, in: International Conference on Data Base theory, ICDT, Lecture Notes in Computer Science, Vol. 893 (1995) pp. 368-382.

    Google Scholar 

  27. I. Niemelä and P. Simons, Efficient implementation of the well-founded and stable model semantics, in: Proc. of the Joint Int. Conf. and Symp. on Logic Programming, ed. M. Maher (MIT Press, 1996) pp. 289-303.

  28. T.C. Przymusinski and H. Turner, Update by means of inference rules, in: Logic Programming and Nonmonotonic Reasoning, Proc. of the Third Int. Conf. LPNMR'95, Lexington, KY, USA, eds. V.W. Marek, A. Nerode and M. Truszczy´nski (1995) pp. 166-174.

  29. F. Rossi and S. Naqvi, Contribution to the view update problem, in: Proc. of the Sixth Int. Conf. on Logic Programming (1989) pp. 389-415.

  30. K. Satoh, Nonmonotonic reasoning by minimal belief revision, in: Proc. Intern. Conf. on 5th Generation Comput. Syst., Tokyo (1988) pp. 455-462. 204 M. Dekhtyar et al. / Maximal approximations to real change

  31. Ch. Sakama and K. Inoue, Updating extended logic programs through abduction, in: Proc. of LPNMR'99, eds. M. Gelfond, N. Leone and G. Pfeifer, Lecture Notes in Artificial Intelligence, Vol. 1730 (1999) pp. 147-161.

  32. K.-D. Schewe and B. Thalheim, Towards a theory of consistency enforcement, Acta Informatica 36 (1999) 97-141.

    Google Scholar 

  33. A. Tomasic, View update translation via deduction and annotation, in: Proc. of the Second International Conference on the Theory of Databases, ICDT'88, Lecture Notes in Computer Science, Vol. 326 (1988) pp. 338-352.

    Google Scholar 

  34. E. Teniente and A. Olivé, Updating knowledge bases while maintaining their consistency, VLDB Journal 4 (2) (1995) 193-241.

    Google Scholar 

  35. A. Weber, Updating propositional formulas, in: Proc. 1st Conf. on Expert Database Syst. (1986) pp. 487-500.

  36. M. Winslet, Reasoning about action using a possible models approach, in: Proc. AAAI'88, Vol. 1 (1988) pp. 89-93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekhtyar, M., Dikovsky, A., Dudakov, S. et al. Maximal state independent approximations to minimal real change. Annals of Mathematics and Artificial Intelligence 33, 157–204 (2001). https://doi.org/10.1023/A:1013112907978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013112907978

Navigation