Abstract
The neural encoding of sensory stimuli is usually investigated for spike responses, although many neurons are known to convey information by graded membrane potential changes. We compare by model simulations how well different dynamical stimuli can be discriminated on the basis of spiking or graded responses. Although a continuously varying membrane potential contains more information than binary spike trains, we find situations where different stimuli can be better discriminated on the basis of spike responses than on the basis of graded responses. Spikes can be superior to graded membrane potential fluctuations if spikes sharpen the temporal structure of neuronal responses by amplifying fast transients of the membrane potential. Such fast membrane potential changes can be induced deterministically by the stimulus or can be due to membrane potential noise that is influenced in its statistical properties by the stimulus. The graded response mode is superior for discrimination between stimuli on a fine time scale.
Similar content being viewed by others
References
Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neurosci. 3(6):617-621.
Azouz R, Gray C (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 97(14):8110-8115.
Buračas G, Albright T (1999) Gauging sensory representation in the brain. Trends Neurosci. 22(7):303-309.
Carr C, Friedmann M (1999) Evolution of time coding systems. Neural Comput. 11:1-20.
Cecchi G, Sigman M, Alonso JM, Martinez L, Chialvo D, Magnasco M (2000) Noise in neurons is message-dependent. Proc. Natl. Acad. Sci. USA 97(10):5557-5561.
Deco G, Schürmann B (1998) The coding of information by spiking neurons: An analytical study. Network: Comput. Neural Syst. 9:303-317.
de Ruyter van Steveninck R, Laughlin S (1996) The rate of information transfer at graded-potential synapses. Nature 379:642-645.
Egelhaaf M, Warzecha AK (1999) Encoding of motion in real time by the fly visual system. Curr. Opin. Neurobiol. 9:454-460.
Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Segev I, Koch C, eds. Methods in Neuronal Modeling (2nd ed.). MIT Press, Cambridge, MA, pp. 313-360.
Geisler W, Albrecht D, Salvi R, Saunders S (1991) Discrimintion performance of single neurons: Rate and temporal-pattern information. J. Neurophysiol. 66(1):334-361.
Haag J, Borst A (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639-641.
Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17:4809-4819.
Haag J, Borst A (1998) Active membrane properties and signal encoding in graded potential neurons. J. Neurosci. 18(19):7972-7986.
Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges.: 49-70.
Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali M, ed. Photoreception and Vision in Invertebrates. Plenum, New York, pp. 523-559.
Hengstenberg R (1977) Spike responses of "non-spiking" visual interneurone. Nature 270:338-340.
Jagadeesh B, Gray C, Ferster D (1992) Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257:552-554.
Johnston D, Wu SS (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.
Kretzberg J, Egelhaaf M, Warzecha AK (2001) Membrane potential fluctuations determine the precision of spike timing and synchronous activity: A model study. J. Computat. Neurosci. 10(1):79-97.
Laughlin S (1989) Coding efficiency and design in visual processing. In: Stavenga D, Hardie R, eds. Facets of Vision. Springer, Berlin, pp. 213-234.
Laughlin S, de Ruyter von Steveninck R, Anderson J (1998) The metabolic cost of neural information. Nature Neurosci. 1(1): 36-41.
Machens C, Prinz P, Stemmler M, Ronacher B, Herz A (2001) Discrimination of behaviourally relevant signals by auditory receptor neurons. Neurocomput. 38-40:263-268.
MacLeod K, Bäcker A, Laurent G (1998) Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395:693-698.
Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-1506.
Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation. Physiolog. Rev. 76(3):687-717.
Mechler F, Victor J, Purpura K, Shapley R (1998) Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J. Neurosci. 18(16):6583-6598.
Morgans C (2000) Neurotransmitter release at ribbon synapses in the retina. Immunology and Cell Biology 78:442-446.
Parker A, Newsome W (1998) Sense and the single neuron: Probing the physiology of perception. Annu. Rev. Neurosci. 21:227-277.
Ratnam R, Nelson M (2000) Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals. J. Neurosci. 20(17):6672-6683.
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA.
Roberts A, Bush B (1981) Neurones Without Impulses. Cambridge University Press, Cambridge.
Stern E, Kincaid A, Wilson C (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77:1697-1715.
Stevens C, Zador A (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1(3):210-217.
van Rossum M (2001) A novel spike distance. Neural Comput. 13(4):751-763.
Victor J, Purpura K (1996) Nature and precision of temporal coding in visual cortex: A metric-space analysis. J. Neurophysiol. 76(2):1310-1326.
Victor J, Purpura K (1997) Metric-space analysis of spike trains: Theory, algorithms and application. Network: Comput. Neural. Syst. 8:127-164.
Vogels R, Orban G (1990) How well do response changes of striate neurons signal differences in orientation? A study in the discriminating monkey. J. Neurosci. 10(11):3543-3558.
Warzecha AK (1994) Realibility of neural information processing in the motion pathway of the blowflies Caliphora erythrocephala and Lucilia cuprina. Ph.D. thesis, Universität Tübingen.
Warzecha AK, Egelhaaf M (2001) Neuronal encoding of visual motion in real-time. In: Zanker J, Zeil J, eds. Motion Vision: Computational, Neural and Ecological Constraints. Springer, Berlin, pp. 239-277.
Warzecha AK, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr. Biol. 8:359-368.
Warzecha AK, Kretzberg J, Egelhaaf M (2000) Reliability of a fly motion sensitive neuron depends on stimulus parameters. J. Neurosci. 20(23):8886-8896.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kretzberg, J., Warzecha, AK. & Egelhaaf, M. Neural Coding with Graded Membrane Potential Changes and Spikes. J Comput Neurosci 11, 153–164 (2001). https://doi.org/10.1023/A:1012845700075
Issue Date:
DOI: https://doi.org/10.1023/A:1012845700075