[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Heuristics in Programming of Nondeterministic Games

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

In the paper, an approach to programming of nondeterministic antagonistic games is considered. This approach may be viewed as a generalization of the classical approach used for deterministic games (chess and the like) and is alternative to neural network methods of programming, which are usually applied to nondeterministic games. As examples of nondeterministic games, the very simple game omega and classical backgammon are considered. Results of programming these games are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Melnikov, B. and Radionov, A., On Strategy Choice in Nondeterministic Antagonistic Games, Programmirovanie, 1998, no. 5, pp. 55-62.

  2. Gardner, M., New Mathematical Diversions from Scientific American. The Unexpected Hanging and Other Mathematical Diversions, New York: Simon and Schuster, 1969. Translated under the title Matematicheskie dosugi, Moscow: Oniks, 1995.

    Google Scholar 

  3. The Mathematical Gardner, Klarner, D., Ed., Belmont: Wadswarth Int. Group, 1981. Translated under the title Matematicheskii tsvetnik, Moscow: Mir, 1983.

    Google Scholar 

  4. Adel'son-Vel'skii, G., Arlazarov, V., and Donskoi, M., Programmirovanie igr (Programming of Games), Moscow: Nauka, 1978.

    Google Scholar 

  5. Adel'son-Vel'skii, G., Arlazarov, V., Bitman, A., and Donskoi, M., Mashina igraet v shakhmaty (Computer Plays Chess), Moscow: Nauka, 1983.

    Google Scholar 

  6. Botvinnik, M., Ot shakhmatista k mashine (From a Chess-Player to a Chess-Playing Machine), Moscow: Fizkul'tura i sport, 1979.

    Google Scholar 

  7. Samuel, A., Some Studies in Machine Learning Using the Game of Checkers, IBM J., 1967, vol. 11, pp. 601-617.

    Google Scholar 

  8. Panov, V., Pervaya kniga shakhmatista (The First Book of a Chess-Player), Moscow: Fizkul'tura i sport, 1964.

    Google Scholar 

  9. Berliner, H., Computer Backgammon, Sci. Am., 1980, vol. 243, pp. 64-72.

    Google Scholar 

  10. Tesauro, G. and Sejnowski, T.J., A Parallel Network That Learns to Play Backgammon, Artificial Intelligence, 1989, no. 39, pp. 357-390.

  11. Tesauro, G., Temporal Difference Learning and TD-Gammon, Commun. ACM, 1995, vol. 38, no. 3, pp. 58-68.

    Google Scholar 

  12. http://jelly.effect.no

  13. Kolmogorov, A., Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of One Variable, Dokl. Akad. Nauk SSSR, 1957, vol. 114, no. 5, pp. 953-956.

    Google Scholar 

  14. Hopfield, J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Nat. Sci. USA, 1982, vol. 79, pp. 2554-2558.

    Google Scholar 

  15. Gorban', A., Obuchenie neironnykh setei (Neural Networks Learning), Moscow: ParaGraf, 1990.

    Google Scholar 

  16. Bitman, A. and Gik, E., EVM za shakhmatnoi doskoi (Computer at a Chessboard), Kvant, 1981, no. 1, pp. 11-17.

  17. Gik, E., Matematika na shakhmatnoi doske (Mathematics on a Chessboard), Moscow: Nauka, 1976.

    Google Scholar 

  18. Melnikov, B. and Moseev, A., Non-Determinatic Games and Economics, in Sbornik materialov II mezhd. nauchno-tekhnicheskoi konf. “Matematicheskie metody i komp'yutery v ekonomike” (Proc. II Int. Conf. “Mathematical Methods and Computers in Economics”), Penza: Penza Technological Institute, 1999.

    Google Scholar 

  19. Shakhmatnyi kodeks SSSR (Chess Lawbook of the USSR), Moscow: Fizkul'tura i sport, 1969.

  20. Goldberg, D., Genetic Algoritms in Search, Optimizatia and Machine Learning, Addison-Wesley, 1989.

  21. Zbigniew, M. and Michalewicz, S., Genetic Algorithm + Data Structure = Evolution Programs, Berlin: Springer, 1992.

    Google Scholar 

  22. Melnikov, B., A New Algorithm of the State-Minimization for the Nondeterministic Finite Automata, Korean J. Comput. Appl. Math., 1999, vol. 6, no. 2, pp. 277-290.

    Google Scholar 

  23. Melnikov, B., Once More about the State-Minimization of the Nondeterministic Finite Automata, Korean J. Comput. Appl. Math., 2000, vol. 7, no. 3, pp. 655-662.

    Google Scholar 

  24. Melnikov, B. and Melnikova, A., Edge-Minimization of Non-Deterministic Finite Automata, Korean J. Comput. Appl. Math.,2001, vol. 8, no. 2 (in press).

  25. Ipatov, V., Periodicheskie diskretnye signaly s optimal'nymi korrelyatsionnymi svoistvami (Periodic Discrete Signals with Optimal Correlation Properties), Moscow: Radio i Svyaz', 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnikov, B.F. Heuristics in Programming of Nondeterministic Games. Programming and Computer Software 27, 277–288 (2001). https://doi.org/10.1023/A:1012345111076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012345111076

Keywords

Navigation