Abstract
In this note we address the problem of finding the GM-estimator for the location parameter of a univariate random variable. When this problem is non-convex but d.c. one can use a standard covering method, which, in the one-dimensional case has a simple form. In this paper we exploit the structure of the problem in order to obtain d.c. decompositions with certain optimality properties in the application of the algorithm. Numerical results show that this general-purpose algorithm outperforms previous ad-hoc methods for this problem.
Similar content being viewed by others
References
Andrews, D.F. (1974), A robust method for multiple linear regression, Technometrics 16, 523-531.
Bittner, L. (1970), Some representation theorems for function and sets and their application to nonlinear programming, Numerische Mathematik 16, 32-51.
Blanquero, R. and Carrizosa, E. (2000), On covering methods for d.c. optimization, Journal of Global Optimization 18, 265-274.
Blanquero, R. (1999), Localización de servicios en el plano mediante técnicas de optimización d.c., PhD. Thesis, Universidad de Sevilla.
Breiman, L. and Cutler, A. (1993), A deterministic algorithm for global optimization, Mathematical Programming 58, 179-199.
Brent, R.P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ.
De Barra, G. (1974), Introduction to Measure Theory, Van Nostrand Reinhold Company, New York.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel,W.A. (1986), Robust statistics. The approach based on influence functions, Wiley, New York.
Hartman, P. (1959), On functions representable as a difference of convex functions, Pacific Journal of Mathematics 9, 707-713.
Holland, P.W. and Welsch, R.E. (1977), Robust regression using iteratively weighted least squares, Commun. Stat. (Theory and Methods) 6, 813-828.
Horst, R., and Pardalos, P.M. (1995), Handbook of Global Optimization, Kluwer Academic Press, Dordrecht.
Horst, R., and Tuy, H. (1996), Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin.
Horst, R. and Thoai, N.V. (1999), DC programming: overview, Journal of Optimization Theory and Applications 103, 1-43.
Huber, P.J. (1973), Robust regression: asymptotics, conjectures and Monte Carlo, Annals of Statistics 1, 799-821.
Huber, P.J. (1981), Robust Statistics, Wiley, New York.
Maronna, R.A. and Yohai, V.J. (1991), The breakdown point of simultaneous general Mestimates of regression and scale, Journal of the American Statistical Association 86, 699-703.
Piyavskii, S.A. (1972), An algorithm for finding the absolute extremum of a function, USSR Computational Mathematics and Mathematical Physic 12, 57-67.
Rockafellar, R.T. (1970), Convex Analysis, Princenton University Press, Princenton, NJ.
Rousseeuw, P.J. and Leroy, A.M. (1987), Robust regression and outlier detection, Wiley, New York.
Späth, H. (1992), Mathematical algorithms for linear regression, Academic Press, San Diego, CA.
Staudte, R.G. and Sheather, S.J. (1990), Robust estimation and testing, Wiley, New York.
Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer Academic Press, Dordrecht.
Wingo, D.R. (1983), Estimating the location of the Cauchy distribution by numerical global optimization, Communications in Statistics Part B: Simulation and Computation 12(2), 201-212.
Yohai, V.J. (1987), High breakdown-point and high efficiency robust estimates for regression, The Annals of Statistics 15, 642-656.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blanquero, R., Carrizosa, E. & Conde, E. Finding GM-estimators with global optimization techniques. Journal of Global Optimization 21, 223–237 (2001). https://doi.org/10.1023/A:1012327609645
Issue Date:
DOI: https://doi.org/10.1023/A:1012327609645