[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Finding GM-estimators with global optimization techniques

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this note we address the problem of finding the GM-estimator for the location parameter of a univariate random variable. When this problem is non-convex but d.c. one can use a standard covering method, which, in the one-dimensional case has a simple form. In this paper we exploit the structure of the problem in order to obtain d.c. decompositions with certain optimality properties in the application of the algorithm. Numerical results show that this general-purpose algorithm outperforms previous ad-hoc methods for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, D.F. (1974), A robust method for multiple linear regression, Technometrics 16, 523-531.

    Google Scholar 

  2. Bittner, L. (1970), Some representation theorems for function and sets and their application to nonlinear programming, Numerische Mathematik 16, 32-51.

    Google Scholar 

  3. Blanquero, R. and Carrizosa, E. (2000), On covering methods for d.c. optimization, Journal of Global Optimization 18, 265-274.

    Google Scholar 

  4. Blanquero, R. (1999), Localización de servicios en el plano mediante técnicas de optimización d.c., PhD. Thesis, Universidad de Sevilla.

  5. Breiman, L. and Cutler, A. (1993), A deterministic algorithm for global optimization, Mathematical Programming 58, 179-199.

    Google Scholar 

  6. Brent, R.P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  7. De Barra, G. (1974), Introduction to Measure Theory, Van Nostrand Reinhold Company, New York.

    Google Scholar 

  8. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel,W.A. (1986), Robust statistics. The approach based on influence functions, Wiley, New York.

    Google Scholar 

  9. Hartman, P. (1959), On functions representable as a difference of convex functions, Pacific Journal of Mathematics 9, 707-713.

    Google Scholar 

  10. Holland, P.W. and Welsch, R.E. (1977), Robust regression using iteratively weighted least squares, Commun. Stat. (Theory and Methods) 6, 813-828.

    Google Scholar 

  11. Horst, R., and Pardalos, P.M. (1995), Handbook of Global Optimization, Kluwer Academic Press, Dordrecht.

    Google Scholar 

  12. Horst, R., and Tuy, H. (1996), Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin.

    Google Scholar 

  13. Horst, R. and Thoai, N.V. (1999), DC programming: overview, Journal of Optimization Theory and Applications 103, 1-43.

    Google Scholar 

  14. Huber, P.J. (1973), Robust regression: asymptotics, conjectures and Monte Carlo, Annals of Statistics 1, 799-821.

    Google Scholar 

  15. Huber, P.J. (1981), Robust Statistics, Wiley, New York.

    Google Scholar 

  16. Maronna, R.A. and Yohai, V.J. (1991), The breakdown point of simultaneous general Mestimates of regression and scale, Journal of the American Statistical Association 86, 699-703.

    Google Scholar 

  17. Piyavskii, S.A. (1972), An algorithm for finding the absolute extremum of a function, USSR Computational Mathematics and Mathematical Physic 12, 57-67.

    Google Scholar 

  18. Rockafellar, R.T. (1970), Convex Analysis, Princenton University Press, Princenton, NJ.

    Google Scholar 

  19. Rousseeuw, P.J. and Leroy, A.M. (1987), Robust regression and outlier detection, Wiley, New York.

    Google Scholar 

  20. Späth, H. (1992), Mathematical algorithms for linear regression, Academic Press, San Diego, CA.

    Google Scholar 

  21. Staudte, R.G. and Sheather, S.J. (1990), Robust estimation and testing, Wiley, New York.

    Google Scholar 

  22. Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer Academic Press, Dordrecht.

    Google Scholar 

  23. Wingo, D.R. (1983), Estimating the location of the Cauchy distribution by numerical global optimization, Communications in Statistics Part B: Simulation and Computation 12(2), 201-212.

    Google Scholar 

  24. Yohai, V.J. (1987), High breakdown-point and high efficiency robust estimates for regression, The Annals of Statistics 15, 642-656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanquero, R., Carrizosa, E. & Conde, E. Finding GM-estimators with global optimization techniques. Journal of Global Optimization 21, 223–237 (2001). https://doi.org/10.1023/A:1012327609645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012327609645

Navigation