[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Effects of different vegetative substrates on algal composition in vernal mesocosms

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the response of an algal assemblage to different vegetative substrates in controlled vernal mesocosms. Litter was collected from four vascular plant communities (Deciduous Forest, Macrophyte, Old Field and Pinus stands) and the litter was used to line the benthos of the vernal mesocosms. The development and response of the algal assemblage in treatment and control mesocosms was tracked biweekly for a period of 56 days. A repeated-measure MANOVA and Bonferroni (Dunn) post-hoc test indicated that the Pinus treatment produced a significantly greater biomass than all other treatments. The Pinus treatment mesocosms had acidic (4.5–4.7) water when sampled on day 42, which continued until the completion of the study. The greatest levels of species richness and diversity were recorded from the Deciduous Forest and Old Field treatments. Algal assemblage analyses indicated that there was much overlap in community structure between various litter treatments and algae alone (no litter). Most of the vernal mesocosm treatments were dominated by the filamentous chlorophytes Mougeotia, Oedogonium and Ulothrix. These results suggest that, in this study, the vegetative litter of vernal mesocosms (with the exception of Pinus) exhibits limited independent influence on the developmental trajectories of algal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1995. Stream Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands: 388 pp.

    Google Scholar 

  • Bärlocher, F. & B. Kendrick, 1973. Fungi and food preferences of Gammarus pseudolimnaeus. Arch. Hydrobiol. 81: 269–295.

    Google Scholar 

  • Brock, T. D., 1973. Lower pH limit for the existence of bluegreen algae: evolutionary and ecological implication. Science 179: 480–483.

    Google Scholar 

  • Carpenter, S. R., 1982. Comparisons of equations for decay of leaf litter in tree-hole ecosystems. Oikos 39: 17–22.

    Google Scholar 

  • Casamatta, D. A., A. B. Collier, G. D. Jenerette & R. G. Verb, 1999. Spatial heterogeneity of the bacterial community in a newly rehabilitated wetland. J. Freshwat. Ecol. 14: 371–378.

    Google Scholar 

  • Cummins, K. W., M. A. Wilzbach & D. M. Gates, 1989. Shredders and riparian vegetation. Bioscience 39: 24–30.

    Google Scholar 

  • Davis, J. S., 1972. Survival records in the algae, and the survival role of certain algal pigments, fat and mucilaginous substances. Biologist 54: 52–93.

    Google Scholar 

  • Dobson, M., 1994. Microhabitat as a determinant of diversity: stream invertebrates colonizing leaf packs. Freshwat. Biol. 32: 565–572.

    Google Scholar 

  • Egglishaw, H. J., 1964. The distributional relationship between the bottom fauna and plant detritus in streams. J. anim. Ecol. 33: 463–476.

    Google Scholar 

  • Evans, J. H., 1958. The survival of freshwater algae during dry periods. Part I. An investigation of the algae of five small ponds. J. Ecol. 46: 149–167.

    Google Scholar 

  • Fish, D. & S. R. Carpenter, 1982. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63: 283–288.

    Google Scholar 

  • Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwat. Biol. 32: 133–142.

    Google Scholar 

  • Friberg, N. & M. J. Winterbourn, 1996. Interactions between riparian leaves and algal/microbial activity in streams. Hydrobiologia 341: 51–56.

    Google Scholar 

  • Gifford, E. M. & A. S. Foster, 1989. Morphology and Evolution of Vascular Plants. W. H. Freeman and Company, New York: 626 pp.

    Google Scholar 

  • Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, New Jersey: 640 pp.

    Google Scholar 

  • Hach Company, 1997. Data Logging Colorimeter Handbook. Hach Company, Loveland, Colorado: 530 pp.

    Google Scholar 

  • Harvey, H. H., 1989. Effects of acidic precipitation on lake ecosystems. In Adrian, D. C. & A. H. Johnson (eds), Acid Precipitation. Springer-Verlag, New York: 137–164.

    Google Scholar 

  • Havens, K. E., A. D. Steinman, H. J. Carrick, J. W. Louda, N. M. Winfree & E. W. Baker, 1999. Comparative analysis of lake periphyton communities using high performance liquid chromatography (HPLC) and light microscope counts. Aquat. Sci. 61: 307–322.

    Google Scholar 

  • Hillebrand, H., C. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Google Scholar 

  • Hintze, J., 2000. Number Cruncher Statistical Systems 2000. Maysville (UT).

  • Kellar, P. E., S. A. Paulson & L. J. Paulson, 1980. Methods for biological, chemical and physical analyses in reservoirs. Tech. Rep. 5, Lake Mead Limnological Res. Center, Univ. Nevada, Las Vegas: 234 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae. VEB Gustav Fisher Verlag, Jena, Germany: 876 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, Surirellaceae. VEB Gustav Fisher Verlag, Jena, Germany: 610 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. VEB Gustav Fisher Verlag, Jena, Germany: 576 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 1. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. VEB Gustav Fisher Verlag, Jena, Germany: 437 pp.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Mulholland, P. J., J. W. Elwood, A. V. Palumbo & R. J. Stevenson, 1986. Effects of stream acidification of periphyton composition, chlorophyll and productivity. Can. J. Fish. aquat. Sci. 43: 1846–1858.

    Google Scholar 

  • Okland, J. & K. A. Okland, 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42: 471–486.

    Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. J. n. am. Benthol. Soc. 15: 481–495.

    Google Scholar 

  • Parent, L., M. Allard, D. Planas & G. Moreau, 1986. The effects of short-term and continuous experimental acidification on biomass and productivity of running water periphytic algae. In Isom, B. G. & J. M. Bates (eds), Impact of Acid Rain and Deposition on Aquatic Biological Systems. American Society for Testing and Materials, Philadelphia: 28–41.

    Google Scholar 

  • Patrick, R. & C.W. Reimer, 1966. The diatoms of the United States. Volume 1. Monographs of the Academy of Natural Sciences of Philadelphia, Number 13, Philadelphia: 688 pp.

  • Patrick, R. & C. W. Reimer, 1975. The diatoms of the United States. Volume 2. Part 1.Monographs of the Academy of Natural Sciences of Philadelphia, Number 13, Philadelphia: 213 pp.

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343–368.

    Google Scholar 

  • Pillinger, J. M., J. A. Coopers & I. Ridge, 1994. Role of phenolic compounds in antialgal activity of barley straw. J. Chem. Ecol. 20: 1557–1569.

    Google Scholar 

  • Pillinger, J. M., I. Gilmour & I. Ridge, 1995. Comparison of antialgal activity of brown-rotted and white-rotted wood and in situ. J. Chem. Ecol. 21: 1113–1125.

    Google Scholar 

  • Planas, D., 1996. Acidification effects. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 497–530.

    Google Scholar 

  • Prescott, G. W., 1962. Algae of the Western Great Lakes Area. W.M.C. Brown Publishers, Dubuque, Iowa: 977 pp.

    Google Scholar 

  • Ridge, I. & J. M. Pillinger, 1996. Towards understanding the nature of algal inhibitors from barley straw. Hydrobiologia 340: 301–305.

    Google Scholar 

  • Ridge, I., J. M. Pillinger & J. Walters, 1995. Alleviating the problems of excessive algal growth. In Harper, D. M. & J. D. Ferguson (eds), The Ecological Basis for River Management. John Wiley, Chinchester: 211–218.

    Google Scholar 

  • Ridge, I., J. Walters & M. Street, 1999. Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiologia 395/396: 173–180.

    Google Scholar 

  • SAS, 1996. SAS/STAT Users Guide. 5th. edn. SAS Institute Inc., Cary (NC).

    Google Scholar 

  • Schneller, M. V., 1955. Oxygen depletion in Salt Creek, Indiana. Invest. Indiana Lakes and Streams 4: 163–175.

    Google Scholar 

  • Stoermer, E. F., M. B. Edlund, C. H. Pilskaln & C. L. Schelske, 1995. Siliceous microfossil distribution in the surficial sediments of Lake Baikal. J. Paleolimnol. 14: 69–82.

    Google Scholar 

  • Stokes, P. M., 1986. Ecological effect of acidification on primary producers in aquatic ecosystems. Wat. Air Soil Pollut. 30: 421–438.

    Google Scholar 

  • Stokes, P.M., E. T. Howell & G. Kratnzberg, 1989. Effects of acidic precipitation on the biota of freshwater lakes. In Adrian, D. C. & A. H. Johnson (eds), Acid Precipitation. Springer-Verlag, New York: 273–304.

    Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1986. Growth and production of a stream stonefly: influences of diet and temperature. Ecology 67: 1396–1410.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference manual and user's guide to Canoco for Windows: software for canonical community ordination, version 4.0. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Turner, M. A., E. T. Howell, M. Summersby, R. H. Hesslein, M. B. Jackson & D. L. Findlay, 1991. Changes in epilithon and epiphyton associated with experimental acidification of a lake to pH 5.0. Limnol. Oceanogr. 36: 1390–1405.

    Google Scholar 

  • Verb, R. G. & M. L. Vis, 2000. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. J. n. am. Benthol. Soc. 19: 274–288.

    Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Myer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter imputs. Science 277: 102–104.

    Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. System. 17: 567–594.

    Google Scholar 

  • Webster, J. R., J. B. Wallace & E. F. Benfield, 1995. Organic processes in streams of the eastern United States. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds), River and Stream Ecosystems (Ecosystems of the World, vol. 22). Elsevier Science, Amsterdam: 117–187.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edn. Saunders College Publishing, Philadelphia: 765 pp.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. 2nd edn. Springer-Verlag, New York: 391 pp.

    Google Scholar 

  • Whitford, L. A. & G. J. Schumaker, 1984. A Manual of Fresh-water Algae. Sparks Press, Raleigh (NC): 337 pp.

    Google Scholar 

  • Williams, D. D., 1987. The Ecology of Temporary Waters. Croom Helm Ltd., London: 205 pp.

    Google Scholar 

  • Williams, W. D., 1985. Biotic adaptations in temporary lentic waters with special reference to those in semi-arid regions. In Davies, B. R. & R. D. Walmsley (eds), Perspectives in Southern Hemisphere Limnology. Dr W. Junk Publishers, The Hague: 85–110.

    Google Scholar 

  • Yan, N. D. & P. M. Stokes, 1978. Phytoplankton of an acidic lake, and its responses to experimental alterations in pH. Envir. Conserv. 5: 93–100.

    Google Scholar 

  • Yanoviak, S. P., 1999. Effects of leaf litter species on macroinvertebrate community properties and mosquito yield in Neotropical tree hole microcosms. Oecologia 120: 147–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verb, R.G., Casamatta, D.A. & Vis, M.L. Effects of different vegetative substrates on algal composition in vernal mesocosms. Hydrobiologia 455, 111–120 (2001). https://doi.org/10.1023/A:1011917318049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011917318049

Navigation