[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Prediction of Nitrogen Solubility in Pure Water and Aqueous NaCl Solutions up to High Temperature, Pressure, and Ionic Strength

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A thermodynamic model for the solubility of nitrogen in pure water (273–623 K, 0–600 bar) and in aqueous NaCl solutions (0–4m, 273-473 K, 0–600 bar) is presented. The model is based on a specific interaction model for the liquid phase and a highly accurate equation of state for the vapor phase. Comparison of the model predictions with experimental data indicates that the model predictions are within or close to experimental uncertainty. Most experimental data sets are consistent within errors of about 7%. Although the parameters were evaluated from data for binary and ternary systems, the model can be used to predict nitrogen solubility in much more complicated systems like seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Thiery, J. Vidal, and J. Dubessy, Geochim. Cosmochim. Acta 58, 1073 (1994).

    Google Scholar 

  2. A. M. Van Den Kerkhof, Geochim. Cosmochim. Acta 54, 621 (1990).

    Google Scholar 

  3. M. Janak, P. J. O'Brien, V. Hurai, and C. Reurel, Lithos 39, 57 (1996).

    Google Scholar 

  4. I. M. Samson and A. E. Williams-Jones, Geochim. Cosmochim. Acta 55, 169 (1991).

    Google Scholar 

  5. A. M. Van Den Kerkhof, J. L. R. Touret, C. Maijer, and J. B. H. Jansen, Geochim. Cosmochim. Acta 55, 2533 (1991).

    Google Scholar 

  6. L. Barta and D. J. Bradley, Geochim. Cosmochim. Acta 49, 195 (1985).

    Google Scholar 

  7. G. R. Cysewskl and J. M. Prausnitz, Ind. Eng. Chem., Fund. 15, 304 (1976).

    Google Scholar 

  8. J. Alvarez, R. Crovetto, and R. Fernandez-Prini, Ber. Bunsenges. Phys. Chem. 92, 935 (1988).

    Google Scholar 

  9. R. Battino, T. R. Rettich, and T. Tominaga, J. Phys. Chem. Ref. Data 13, 563 (1984).

    Google Scholar 

  10. Y. Li and Long X. Nghiem, Can. J. Chem. Eng. 64, 486 (1986).

    Google Scholar 

  11. A. Braibanti, E. Fisicaro, and A. Ghiozzi, J. Solution Chem. 24, 703 (1995).

    Google Scholar 

  12. J. Alvarez and R. Fernandez-Prini, Fluid Phase Equilibr. 66, 309 (1991).

    Google Scholar 

  13. Z. Duan, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 60, 1209 (1996).

    Google Scholar 

  14. Z. Duan, N. Moller, and J. H. Weare Geochim. Cosmochim. Acta 56, 1451 (1992).

    Google Scholar 

  15. K. Denbigh The Principles of Chemical Equilibrium, 3d edn. (Cambridge University Press, Cambridge, 1971).

    Google Scholar 

  16. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere Publishing, Washington D.C., 1984).

    Google Scholar 

  17. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  18. K. S. Pitzer, J. C. Peiper, and R. H. Busey, J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  19. R. Wiebe, V. L. Gaddy, and C. Heins, Ind. Eng. Chem. 24, 927 (1932).

    Google Scholar 

  20. R. Wiebe, V. L. Gaddy, and C. Heins, J. Amer. Chem. Soc. 55, 947 (1933).

    Google Scholar 

  21. J. B. Goodman and N. W. Krase, Ind. Eng. Chem. 23, 401 (1931).

    Google Scholar 

  22. A. W. Saddington and N. W. Krase, J. Amer. Chem. Soc. 56, 353 (1934).

    Google Scholar 

  23. N. O. Smith, S. Kelemen, and B. Nagy, Geochim. Cosmochim. Acta 26, 921 (1962).

    Google Scholar 

  24. T. D. O'sullivan and N. O. Smith, J. Phys. Chem. 74, 1460 (1970).

    Google Scholar 

  25. C. L. Young, Nitrogen Solubilities Above 200 kPa, IUPAC Solubility Data Ser. Vol. 10, R. Battino, ed. (Pergamon Press, Oxford, 1981).

    Google Scholar 

  26. R. P. Kennan and G. L. Pollack, J. Chem. Phys. 93, 2724 (1990).

    Google Scholar 

  27. C. J. J. Fox, Trans. Faraday Soc. 5, 68 (1909).

    Google Scholar 

  28. C. E. Klots and B. B. Benson, J. Marine Res. 21, 48 (1963).

    Google Scholar 

  29. T. J. Morrison and F. Billett, J. Chem. Soc. P. 3819 (1952).

  30. C. N. Murray, J. P. Riley, and T. R. S. Wilson, Deep-Sea Res. 16, 297 (1969).

    Google Scholar 

  31. C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  32. J. H. Weare, Rev. Mineral. 17, 143 (1987).

    Google Scholar 

  33. E. Douglas, J. Phys. Chem. 69, 2608 (1965).

    Google Scholar 

  34. H. D. Holland, The Chemistry of the Atmosphere and Oceans [Wiley-(Interscience), New York, 1978].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, R., Hu, W. & Duan, Z. Prediction of Nitrogen Solubility in Pure Water and Aqueous NaCl Solutions up to High Temperature, Pressure, and Ionic Strength. Journal of Solution Chemistry 30, 561–573 (2001). https://doi.org/10.1023/A:1010339019489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010339019489

Navigation