[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the resolution of singularities of ordinary differential systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We show how some differential geometric ideas help to resolve some singularities of ordinary differential systems. Hence a singular problem is replaced by a regular one, which facilitates further analysis of the system. The methods employed are constructive and the regularized systems can also be used for numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren, Vol. 250 (Springer, 1983).

  2. V. Arnold, A. Varchenko and S. Goussein-Zadé, Singularités des Applications Différentiables I: Classification des Points Critiques, des Caustiques et des Fronts d'Onde (Mir, 1986).

  3. U. Ascher and P. Lin, Sequential regularization methods for nonlinear higher index DAEs, to appear in SIAM J. Sci. Comput.

  4. K. Brenan, S. Campbell and L. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (North-Holland, 1989).

  5. D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms, Undergraduate Texts Math. (Springer, 1992).

  6. H. Goldschmidt, Integrability criteria for systems of non-linear partial differential equations, J. Differential Geom. 1 (1967) 269-307.

    MATH  MathSciNet  Google Scholar 

  7. É. Goursat, Cours d'Analyse Mathématique, Vol. 2, 6th ed. (Gauthier-Villars, 1942).

  8. G.-M. Greuel, G. Pfister and H. Schönemann, SINGULAR Version 1.2 User Manual, Reports On Computer Algebra, No. 21, Centre for Computer Algebra, University of Kaiserslautern (June 1998); http://www.mathematik.uni-kl.de/~zca/Singular.

  9. J. Harris, Algebraic Geometry, Graduate Texts Math., Vol. 133 (Springer, 1992).

  10. E. Hubert, Étude algébrique et algoritmique des singularités des équations différentielles implicites, Ph.D. thesis, Institut National Polytechnique Grenoble (1997).

  11. I. Kaplansky, An Introduction to Differential Algebra (Hermann, 1957).

  12. J.F. Pommaret, Differential Galois Theory, Math. Appl., Vol. 15 (Gordon and Breach, 1983).

  13. J.F. Ritt, Differential Algebra, Amer. Math. Soc. Colloq. Publ., Vol. 33 (Amer. Math. Soc., Providence, RI, 1950; Dover, 1966).

    MATH  Google Scholar 

  14. D. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser., Vol. 142 (Cambridge University Press, 1989).

  15. D. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969) 179-239.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vols. 1-5, 2nd ed. (Publish or Perish, 1979).

  17. J. Tuomela, On singular points of quasilinear differential and differential-algebraic equations, BIT 37 (1997) 966-975.

    MathSciNet  Google Scholar 

  18. J. Tuomela, On the numerical solution of involutive ordinary differential systems: Higher order methods, Research Report A397, Helsinki University of Technology (1998).

  19. J. Tuomela and T. Arponen, On the numerical solution of involutive ordinary differential systems: Introduction and numerical results, Research Report A393, Helsinki University of Technology (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuomela, J. On the resolution of singularities of ordinary differential systems. Numerical Algorithms 19, 247–259 (1998). https://doi.org/10.1023/A:1019179128548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019179128548

Navigation