[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The spatially dominant equilibrium of a game

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A new framework for equilibrium selection is presented. Playing games recurrently inspace and time may render one of the equilibria “spatially dominant”. Prevailing initially ona large enough finite part of the space, it will take over on the whole space in the long run.In particular it will drive out the other equilibria along travelling waves. This new dominanceconcept is compared with the Harsanyi‐Selten risk‐dominance concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Blume, The statistical mechanics of best-response strategy revision, Games and Economic Behav. 11(1995)111-145.

    Google Scholar 

  2. H. Carlsson and E. van Damme, Equilibrium selection in stag hunt games, in: Frontiers of Game Theory, eds. K. Binmore, A. Kirman and P. Tani, MIT Press, 1993, pp. 237-253.

  3. R. Cressman and G.T. Vickers, Spatial and density effects in evolutionary game theory, J. Theor. Biol. 184(1997)359-369.

    Google Scholar 

  4. G. Ellison, Learning, local interaction, and coordination, Econometrica 61(1993)1047-1071.

    Google Scholar 

  5. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer Lecture Notes in Biomathematics 28, 1979.

  6. D. Foster and P. Young, Stochastic evolutionary game dynamics, Theor. Population Biology 38 (1990)219-232.

    Google Scholar 

  7. I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica 59(1991) 859-867.

    Google Scholar 

  8. W. Güth, Equilibrium selection by unilateral deviation stability, in: Rational Interaction, Essays in Honor of John C. Harsanyi, ed. R. Selten, Springer, Berlin, 1992, pp. 161-189.

    Google Scholar 

  9. W. Güth and B. Kalkofen, Unique Solutions for Strategic Games, Springer Lecture Notes in Economics and Mathematical Systems 328, 1989.

  10. J.C. Harsanyi and R. Selten, A General Theory of Equilibrium Selection in Games, MIT Press, 1988.

  11. J. Hofbauer, Stability for the best response dynamics, Preprint, Vienna, 1994.

  12. J. Hofbauer, Equilibrium selection via travelling waves, in: Yearbook of the Institute Vienna Circle 5/97: Game Theory, Experience, Rationality. Foundations of Social Sciences, Economics and Ethics. In Honor of John C. Harsanyi, eds. W. Leinfellner and E. Koehler, Kluwer, Dordrecht/Boston/London, 1997, pp. 245-260.

    Google Scholar 

  13. J. Hofbauer, V. Hutson and G.T. Vickers, Travelling waves for games in economics and biology, Nonlinear Analysis, TMA 30(1997)1235-1244.

    Google Scholar 

  14. J. Hofbauer and J.W. Weibull, Evolutionary selection against dominated strategies, J. Economic Theory 71(1996)558-573.

    Google Scholar 

  15. V. Hutson and K. Mischaikow, Singular limits for travelling waves for a pair of equations, Proc. Royal Soc. Edinburgh 126A(1996)399-411.

    Google Scholar 

  16. M. Kandori, G.J. Mailath and R. Rob, Learning, mutation and long-run equilibria in games, Econometrica 61(1993)29-56.

    Google Scholar 

  17. Y. Kim, Equilibrium selection in n-person coordination games, Games Economic Behavior 15(1996)203-227.

    Google Scholar 

  18. M. Kosfeld, Stochastic strategy adjustment in coordination games, Preprint, 1996.

  19. B. Kuon, Two-person Bargaining Experiments with Incomplete Information, Springer Lecture Notes in Economics and Mathematical Systems, 1994.

  20. A. Matsui and K. Matsuyama, An approach to equilibrium selection, J. Economic Theory 65(1995)415-434.

    Google Scholar 

  21. K. Mischaikow and V. Hutson, Travelling waves for mutualist species, SIAM J. Math. Anal. 24 (1993)987-1008.

    Google Scholar 

  22. D. Monderer and L. Shapley, Potential games, Games Econ. Behav. 14(1996)124-143.

    Google Scholar 

  23. J. Reineck, Travelling wave solutions to a gradient system, Trans. Amer. Math. Soc. 307(1988)535-544.

    Google Scholar 

  24. L. Samuelson, Evolutionary Games and Equilibrium Selection, MIT Press, 1997.

  25. K. H. Schlag, Why imitate, and if so, how?, Preprint, 1994.

  26. R. Selten, An axiomatic theory of a risk dominance measure for bipolar games with linear incentives, Games Economic Behavior 8(1995)213-263.

    Google Scholar 

  27. R. Sugden, The coexistence of conventions, J. Economic Behavior Organization 28(1995)241-256.

    Google Scholar 

  28. E. van Damme, Equilibrium selection in team games, in: Understanding Strategic Behavior: Essays in Honor of Reinhard Selten, ed. W. Güth, Springer, 1996.

  29. A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence, RI, 1994.

    Google Scholar 

  30. J. W. Weibull, Evolutionary Game Theory, MIT Press, 1995.

  31. Y. Yegorov, Spatial price dynamics, Preprint, 1997.

  32. H.P. Young, The evolution of conventions, Econometrica 61(1993)57-84.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofbauer, J. The spatially dominant equilibrium of a game. Annals of Operations Research 89, 233–251 (1999). https://doi.org/10.1023/A:1018979708014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018979708014

Keywords

Navigation