[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Automorphism Groups of Affine-Invariant Codes.

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Using the classification of finite simple groups, we obtain a condition for a permutation group on a finite field GF(pm) to have the affine group AGL(1,pm) as a subgroup. Applying this result to the automorphism groups of non trivial affine-invariant codes, we prove that these automorphism groups are always subgroups of the general affine group AGL(m,p).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Berger, A direct proof for the Automorphism Group of Reed Solomon Codes, Proceedings of Eurocode'90 (G Cohen and P Charpin ed.), Lecture notes in Computer science, Springer Verlag 514, Berlin-Hieidelberg, New York (1991) pp 21–29

    Google Scholar 

  2. W Bumside, Theory of Groups of Finite Order Cambridge University Press, Cambridge (1911).

  3. PJ Cameron, Finite Permutation Groups ld Finite Simple Groups, Bull London Math Soc. n 13 (1981) p 1–22.

    Google Scholar 

  4. P Charpin, Codes Cycliques Etendus Invariants sous le Groupe Affine, These de Doctorat d'Etat, Universite Paris VII. LITP (1987)

  5. P Charpin, The Extended Reed Solomon Codes considered as Ideals of a Modular Algebra, Annals of Discrete Mathematics n.17 (1983), p 171–176.

    Google Scholar 

  6. J. Dieudonna, On the Automorphisms of the Classical Groups, Memoirs of the American Mathematical Society n.2 (1951).

  7. A. Dur, The Automorphism Group of Reed Solomon Codes, Journal of Combinatorial Theory series A, vol. 4, 1 (1987).

    Google Scholar 

  8. R.M Guralnick, Subgroups of Prime Power index in a simple group, Journal of Algebran.81 (1983), p. 304–311.

    Google Scholar 

  9. B. Huppert, Endliche Gruppen 1 Springer Verlag 134, Berlin-Heidelberg, New York (1967).

    Google Scholar 

  10. B. Huppert and N Blackburn, Finite Groups IISpringer-Verlag 242, Berlin-Heidelberg, New York (1982)

    Google Scholar 

  11. B. Huppert and N. Blackburn, Finite Groups 111 Springer-Verlag 243, Berlin-Heidelberg, New York (1982).

    Google Scholar 

  12. T.Kasami, S.Lin and W.W. Peterson, Some Results on Cyclic Codes which are Invariant under the Affine Gloup and their Applications, Info and Control, vol.11 (1967), pp475–496

    Google Scholar 

  13. W. Knapp and P Schmidt, Codes with Prescribed Permutation Group, Journal of Algebra n67 (1980) pp.415–435

    Google Scholar 

  14. F.J MacWilliams and NJA Sloane, The Theory of Error Correcting Codes North Holland, Amsterdam (1977)

    Google Scholar 

  15. B Mortimer, Permutation Groups Containing Affine Groups of the same Degree Journal of London Math Soc vol 2. n 15 (1977) pp.445–455.

    Google Scholar 

  16. M. Suzuki, Group Theory I Springer-Verlag 247, Berlin Heidelberg, New York(1982)

  17. H Wielandt, Finite Permutation Groups, Academic Press, New York and London (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T.P. On the Automorphism Groups of Affine-Invariant Codes.. Designs, Codes and Cryptography 7, 215–221 (1996). https://doi.org/10.1023/A:1018038723045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018038723045

Navigation