[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The effect of heat treatment on the toughness, hardness and microstructure of low carbon white cast irons

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of destabilisation and subcritical heat treatment on the impact toughness, hardness, and the amount and mechanical stability of retained austenite in a low carbon white cast iron have been investigated. The experimental results show that the impact energy constantly increases when the destabilisation temperature is raised from 950°C to 1200°C. Although the hardness decreases, the heat-treated hardness is still greater than the as-cast state. After destabilisation treatment at 1130°C, tempering at 200 to 250°C for 3 hours leads to the highest impact toughness, and secondary hardening was observed when tempering over 400°C. The amount of retained austenite increased with the increase in the destabilisation temperature, and the treatment significantly improves the mechanical stability of the retained austenite compared with the as-cast state. Tempering below 400°C does not affect the amount of retained austenite and its mechanical stability. But the amount of retained austenite is dramatically reduced when tempered above 400°C. The relationship between the mechanical properties and the microstructure changes was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. P. Tabrett, I. R. Sare and M. R. Ghomashchi, Int.Mater.Rev. 41 (1996) 59.

    Google Scholar 

  2. D. J. Elwell, The British Foundryman 78 (1985) 342.

    Google Scholar 

  3. R. B. Gundlach, AFS Trans. 82 (1974) 309.

    Google Scholar 

  4. R. W. Durman, Foundry Trade Journal 134 (1973) 645.

    Google Scholar 

  5. C. P. Tabrett and I. R. Sare, Wear 203/204 (1997) 206.

    Google Scholar 

  6. H.-X. Chen, Z.-C. Chang, J.-C. Lu and H.-T. Lin, ibid. 166 (1993) 197.

    Google Scholar 

  7. J. K. Fulcher, T. H. Kosel and N. F. Fiore, ibid. 84 (1983) 313.

    Google Scholar 

  8. I. R. Sare, Metals Tech. 6 (1979) 412.

    Google Scholar 

  9. M. Radulovic, M. Fiset, K. Peev and M. Tomovic, J.Mater.Sci. 29 (1994) 5085.

    Google Scholar 

  10. K. H. Zum Gahr and D. V. Doane, Metall.Trans. 11A (1980) 613.

    Google Scholar 

  11. A. Kootsookos, J. D. Gates and R. A. Eaton, Cast Metals. 7 (1995) 239.

    Google Scholar 

  12. F. Maratray and A. Poulalion, AFS Trans. 90 (1982) 795.

    Google Scholar 

  13. H. S. Avery, in Proceedings of Materials for the Mining Industry, Vail, CO, edited by R. Q. Barr (Climax Molybdenum Company, 1974) p. 43.

  14. S. Turenne, F. Lavallee and J. Masounave, J.Mater.Sci. 24 (1989) 3021.

    Google Scholar 

  15. I. R. Sare and B. K. Arnold, Metall.Mater.Trans. 26A (1995) 1785.

    Google Scholar 

  16. R. H. T. Dixon, JISI 197 (1961) 40.

    Google Scholar 

  17. J. I. Parks, AFS Trans. 86 (1978) 93.

    Google Scholar 

  18. J. M. Bereza, The British Foundryman 74 (1981) 205.

    Google Scholar 

  19. A. Kootsookos, PhD thesis, The University of Queensland, 1994

  20. S. K. Hann, PhD thesis, The University of Queensland, 1998

  21. K. H. Zum Gahr and G. T. Eldis, Wear 64 (1980) 175.

    Google Scholar 

  22. S. K. Hann and J. D. Gates, J.Mater.Sci. 32 (1997) 1249.

    Google Scholar 

  23. J. T. H. Pearce, AFS Trans. 92 (1984) 599.

    Google Scholar 

  24. M.-X. Zhang, P. M. Kelly, L. K. Bekessy and J. D. Gates, Mater.Chara. 45 (2000) 39.

    Google Scholar 

  25. M.-X. Zhang and P. M. Kelly, ibid. 40 (1998) 159.

    Google Scholar 

  26. C. S. Roberts, J.Met. 5 (19533) 203.

  27. C. J. Ball, R. G. Blake and A.Jostsons, Metals Forum 2/3 (1985) 109.

    Google Scholar 

  28. M-X. Zhang and P. M. Kelly, Acta Mater, submitted.

  29. G. Thomas, Metall.Trans. 2A (1971) 2373.

    Google Scholar 

  30. K. H. Zum Gahr and W. G. Scholz, J.Metals 32 (1980) 38.

    Google Scholar 

  31. B. M. Hebbar and S. Seshan, Trans.AFS 102 (1994) 349.

    Google Scholar 

  32. M. E. Garber, E. V. Rozhkova and I. I. Tsypin, Met.Sci.Heat Treat. 5 (1969) 11.

    Google Scholar 

  33. S. Parent and J. C. Margerie, AFS Trans. 80 (1972) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, MX., Kelly, P.M. & Gates, J.D. The effect of heat treatment on the toughness, hardness and microstructure of low carbon white cast irons. Journal of Materials Science 36, 3865–3875 (2001). https://doi.org/10.1023/A:1017949600733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017949600733

Keywords

Navigation