[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

If-Logic and Truth-definition

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper we show that first-order languages extended with partially ordered connectives and partially ordered quantifiers define, under a certain interpretation, their own truth-predicate. The interpretation in question is in terms of games of imperfect information. This result is compared with those of Kripke and Feferman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barwise, J.: Some applications of the Henkin quantifiers, Israel J. of Mathematics, 25 (1976), 47- 63.

    Google Scholar 

  2. Blass, A. and Gurevich, Y.: Henkin Quantifiers and Complete Problems, Annals of Pure and Applied Logic, 32 (1986), 1- 16.

    Google Scholar 

  3. Enderton, H. B.: Finite partially-ordered quantifiers, Z. Math. Logic Grundlag. Math. 16 (1970), 393- 397.

    Google Scholar 

  4. Hella, L. and Sandu, G.: Partially ordered connectives and finite graphs, in: M. Mostowski, M. Krynicki and L. V. Szczerba (eds), Quantifiers II, Kluwer Academic Publishers (1995), 79- 88.

  5. Henkin, L.: Some remarks on infinitely long formulas, in: Infinitistic Methods, Warsaw (1961), 167- 183.

  6. Hintikka, J. and Kulas, J.: The Game of Language, D. Reidel, Dordrecht (1983).

    Google Scholar 

  7. Hintikka, J.: Defining truth, the whole truth and nothing but the truth, Reports from the Department of philosophy of the University of Helsinki, 2 (1991).

  8. Hintikka, J. and Sandu, G.: Informational Independence as a Semantical Phenomenon, in: J. E. Fenstad et al. (eds), Logic Methodology and Philosophy of Science VIII, Elsevier Science Publishers, Amsterdam (1989), 571- 589.

    Google Scholar 

  9. Hodges, W.: Elementary Predicate Logic, in: F. Gabbay and F. Guenther (eds), Handbook of Philosophical Logic, I, D. Reidel, Dordrecht (1989).

    Google Scholar 

  10. Krynicki, M. and Lachlan, A.: On the semantics of the Henkin quantifier, J. Symbolic Logic 44 (1979), 184- 200.

    Google Scholar 

  11. Krynicki, M.: Hierarchies of Partially Ordered Connectives and Quantifiers, Mathematical Logic Quaterley 39 (1993), 287- 294.

    Google Scholar 

  12. Krynicki, M. and Mostowski, M.: Henkin Quantifiers, in: M. Mostowski and L. V. Szczerba (eds), Quantifiers II, Kluwer Academic Publishers (1995), 193- 262.

  13. Saarinen, E. (ed.): Game-theoretical Semantics, D. Reidel, Dordrecht (1979).

    Google Scholar 

  14. Sandu, G.: On the logic of informational independence and its applications, J. Philosophical Logic 22 (1993), 29- 60.

    Google Scholar 

  15. Sandu, G. and Väänänen, J.: Partially Ordered Connectives, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 38 (1992), 361- 372.

    Google Scholar 

  16. Walkoe, W.: Finite partially order quantification, J. Symbolic Logic 35 (1970), 535- 550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandu, G. If-Logic and Truth-definition. Journal of Philosophical Logic 27, 143–164 (1998). https://doi.org/10.1023/A:1017905122049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017905122049

Keywords

Navigation