Abstract
In this paper we show that first-order languages extended with partially ordered connectives and partially ordered quantifiers define, under a certain interpretation, their own truth-predicate. The interpretation in question is in terms of games of imperfect information. This result is compared with those of Kripke and Feferman.
Similar content being viewed by others
REFERENCES
Barwise, J.: Some applications of the Henkin quantifiers, Israel J. of Mathematics, 25 (1976), 47- 63.
Blass, A. and Gurevich, Y.: Henkin Quantifiers and Complete Problems, Annals of Pure and Applied Logic, 32 (1986), 1- 16.
Enderton, H. B.: Finite partially-ordered quantifiers, Z. Math. Logic Grundlag. Math. 16 (1970), 393- 397.
Hella, L. and Sandu, G.: Partially ordered connectives and finite graphs, in: M. Mostowski, M. Krynicki and L. V. Szczerba (eds), Quantifiers II, Kluwer Academic Publishers (1995), 79- 88.
Henkin, L.: Some remarks on infinitely long formulas, in: Infinitistic Methods, Warsaw (1961), 167- 183.
Hintikka, J. and Kulas, J.: The Game of Language, D. Reidel, Dordrecht (1983).
Hintikka, J.: Defining truth, the whole truth and nothing but the truth, Reports from the Department of philosophy of the University of Helsinki, 2 (1991).
Hintikka, J. and Sandu, G.: Informational Independence as a Semantical Phenomenon, in: J. E. Fenstad et al. (eds), Logic Methodology and Philosophy of Science VIII, Elsevier Science Publishers, Amsterdam (1989), 571- 589.
Hodges, W.: Elementary Predicate Logic, in: F. Gabbay and F. Guenther (eds), Handbook of Philosophical Logic, I, D. Reidel, Dordrecht (1989).
Krynicki, M. and Lachlan, A.: On the semantics of the Henkin quantifier, J. Symbolic Logic 44 (1979), 184- 200.
Krynicki, M.: Hierarchies of Partially Ordered Connectives and Quantifiers, Mathematical Logic Quaterley 39 (1993), 287- 294.
Krynicki, M. and Mostowski, M.: Henkin Quantifiers, in: M. Mostowski and L. V. Szczerba (eds), Quantifiers II, Kluwer Academic Publishers (1995), 193- 262.
Saarinen, E. (ed.): Game-theoretical Semantics, D. Reidel, Dordrecht (1979).
Sandu, G.: On the logic of informational independence and its applications, J. Philosophical Logic 22 (1993), 29- 60.
Sandu, G. and Väänänen, J.: Partially Ordered Connectives, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 38 (1992), 361- 372.
Walkoe, W.: Finite partially order quantification, J. Symbolic Logic 35 (1970), 535- 550.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sandu, G. If-Logic and Truth-definition. Journal of Philosophical Logic 27, 143–164 (1998). https://doi.org/10.1023/A:1017905122049
Issue Date:
DOI: https://doi.org/10.1023/A:1017905122049