Abstract
Estrogens have long been recognized as being important for stimulating the growth of a large proportion of breast cancers. Now it is recognized that estrogen action is mediated by two receptors, and the presence of estrogen receptor α (ERα)3 correlates with better prognosis and the likelihood of response to hormonal therapy. Over half of all breast cancers overexpress ERα and around 70% of these respond to anti-estrogen (for example tamoxifen) therapy. In addition, the presence of elevated levels of ERα in benign breast epithelium appears to indicate an increased risk of breast cancer, suggesting a role for ERα in breast cancer initiation, as well as progression. However, a proportion of ERα-positive tumors does not respond to endocrine therapy and the majority of those that do respond eventually become resistant. Most resistant tumors remain ERα-positive and frequently respond to alternative endocrine treatment, indicative of a continued role for ERα in breast cancer cell proliferation. The problem of resistance has resulted in the search for and the development of diverse hormonal therapies designed to inhibit ERα action, while research on the mechanisms which underlie resistance has shed light on the cellular mechanisms, other than ligand binding, which control ERα function.
Similar content being viewed by others
REFERENCES
J. L. Kelsey and G. S. Berkowitz (1988). Breast cancer epidemiology. Cancer Res. 48:5615–5623.
I. H. Russo and J. Russo (1998). Role of hormones in mammary cancer initiation and progression. J. Mam. Gland Biol. Neoplasia 3(1):49–61.
K. R. Yamamoto (1985). Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19:209–252.
D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans (1995). The nuclear receptor superfamily: The second decade. Cell 83:835–839.
B. Blumberg and R. M. Evans (1998). Orphan nuclear receptors: New ligands and new possibilities. Genes Dev. 12:3149–3155.
J. W. R. Schwabe, L. Chapman, J. T. Finch, and D. Rhodes (1993). The crystal structure of the estrogen receptor DNAbinding domain bound to DNA: How receptors discriminate between their response elements. Cell 70:567–578.
A. M. Brzozowski, A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engstrom, L. Ohman, G. L. Green, J.-A. Gustafsson, and M. Carlquist (1997). Molecular basis of agonism and antagonism of the oestrogen receptor. Nature 389: 753–758.
A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. Agard, and G. L. Greene (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937.
D. M. Tanenbaum, Y. Wang, S. P. Williams, and P. B. Sigler (1998). Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl. Acad. Sci. U.S.A. 95:5998–6003.
H. Gronemeyer (1991). Transcription activation by estrogen and progesterone receptors. Ann. Rev. Biochem. 25:89–123.
M. J. Tsai and B. W. O'Malley (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63:451–486.
M. Beato, P. Herlich, and G. Schutz (1995). Steroid hormone receptors: Many actors in search of a plot. Cell 83:851–857.
S. Dauvois, P. S. Danielian, R. White, and M. G. Parker (1992). Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc. Natl. Acad. Sci. U.S.A. 89:4037–4041.
S. Dauvois, R. White, and M. G. Parker (1993). The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell Sci. 106:1377–1388.
Y. Sadovsky, P. Webb, G. Lopez, J. D. Baxter, P. M. Fitzpatrick, E. Gizang-Ginsberg, V. Cavailles, M. G. Parker, and P. J. Kushner (1995). Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol. Cell Biol. 15:1554–1563.
N. H. Ing, J. M. Beekman, S. Y. Tsai, M J. Tsai, and B. W. O'Malley (1992). Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.
X. Jacq, C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora (1994). Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
B. Hanstein, R. Eckner, J. DiRenzo, S. Halachmi, H. Liu, B. Searcy, R. Kurokawa, and M. Brown (1996). p300 is a component of an estrogen receptor coactivator complex. Proc. Natl. Acad. Sci. U.S.A. 93:11540–11545.
L. P. Freedman (1999). Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8.
C. K. Glass and M. G. Rosenfeld (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14:121–141.
T. Perlmann and R. M. Evans (1988). Nuclear receptors in Sicily: All in the famiglia. Cell 90:391–397.
D. P. Edwards (2000). The role of coactivators and corepressors in biology and mechanism of action of steroid hormone receptors. J. Mam. Gland Biol. Neoplasia 5(3)(1)xx–xx.
A. M. Brzozowski, A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engstrom, L. Ohman, G. L. Green, J.-A. Gustafsson, and M. Carlquist (1997). Molecular basis of agonism and antagonism of the oestrogen receptor. Nature 389:753–758.
D. Moras and H. Gronemeyer (1998). The nuclear receptor ligand-binding domain: Structure and function. Curr. Opin. Cell Biol. 10:384–391.
D. Ricketts, L. Turnbull, G. Ryall, R. Bakhshi, N. S. B. Rawson, J.-C. Gazet, C. Nolan, and R. CCoombes (1991). Estrogen and progesterone receptors in the normal female breast. Cancer Res. 51:1817–1822.
A. S. Khan, M. A. M. Rogers, K. K. Khurana, M. M. Meguid, and P. J. Numann (1998). Estrogen receptor expression in benign breast epithelium and breast cancer risk. J. Natl. Cancer Inst. 90:37–42.
I. F. O'Connor, M. V. Shembekar, and S. Shousha (1998). Breast carcinoma developing in patients on hormone replacement therapy: A histological and immunohistological study. J. Clin. Pathol. 51(12):935–938.
C. Markopoulos, U. Berger, P. Wilson, J.-C. Gazet, and R. C. Coombes (1988). Estrogen receptor content of normal breast cells and breast carcinomas throughout the menstrual cycle. Brit. Med. J. 296:1349–1351.
H. Kirkman (1959). Induction of renal tumors by estrogens. Natl. Cancer Inst. Monogr. 1:1–59.
E. L. Cavalieri, D. E. Stack, P. D. Devanesan, R. Todorovic, I. Dwivedy, S. Higginbothan, S. L. Johansson, K. D. Patil, M. L. Gross, J. K. Gooden, R. Ramanathan, R. L. Cerny, and E. G. Rogan (1997). Molecular origin of cancer: Catechol estrogen-3, 4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. U.S.A. 94:10937–10942.
I. Dwivedy, P. Devanesan, P. Cremonesi, E. Rogan, and E. Cavalieri (1992). Synthesis and characterization of estrogen 2, 3-and 3, 4-quinones. Comparison of DNA adducts formed by the quinones versus horseradish peroxidase-activated catechol estrogens. Chem. Res. Toxicol. 5(6):828–833.
C. L. Hayes, D. C. Spink, B. C. Spink, J. Q. Cao, N. J. Walker, and T. R. Sutter (1996). 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A. 93(18):9776–9781.
C. S. Huang, H. D. Chern, K. J. Chang, C. W. Cheng, S. M. Hsu, and C. Y. Shen (1999). Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: A multigenic study on cancer susceptibility. Cancer Res. 59(19):4870–4875.
J. L. Stanford, M. Szklo, and L. A. Brinton (1986). Estrogen receptors and breast cancer. Epidemiol Rev. 8:42–59.
L. A. Habel and J. L. Stanford (1993). Hormone receptors and breast cancer. Epidemiol Rev. 15:209–219.
A. Zeleniuch-Jacquotte, P. Toniolo, M. Levitz, R. E. Shore, K. L. Koenig, and S. Banarjee et al. (1995). Endogenous estrogens and risk of breast cancer by estrogen receptor status: A prospective study in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 4:857–860.
J. F. R. Robertson (1996). Estrogen receptor: a stable phenotype in breast cancer. Brit. J. Cancer 73:5–12.
T. J. Powles, C. Gordon, and R. C. Coombes (1982). Clinical trial of multiple endocrine therapy for metastatic and locally advanced breast cancer with tamoxifen-aminoglutethimidedanazol compared to tamoxifen used alone. Cancer Res. 42(Suppl):34158–34195.
R. C. Coombes, S. W. M. Hughes, and M. Dowsett (1992). 4-hydroxy-androstenedione: A new treatment for Postmenopausal patients with breast cancer. Eur. J. Cancer 28A: 1963–1965.
R. E. Taylor, T. J. Powles, J. Humphreys, R. Bettelheim, M. Dowsett, A. J. Casey, A. M. Neville, and R. C. Coombes (1982). Effects of endocrine therapy on steriod-receptor content of breast cancer. Brit. J. Cancer 45:80–85.
R. B. Clarke, I. J. Laidlaw, L. J. Jones, A. Howell, and E. Anderson (1993). Effect of tamoxifen on Ki67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. Brit. J. Cancer 67:606–611.
P. A. Murray, K. Gomm, D. Ricketts, T. Powles, and R. C. C. Coombes (1994). The effect of endocrine therapy on the levels of estrogen and progesterone receptor and transforming growth factor-β1 inmetastatic human breast cancer: An immunocytochemical study. Eur. J. Cancer 30:1218–1222.
Early Breast Cancer Trialists' Collaborative Group (1998). Polychemo-therapy for early breast cancer: An overview of the randomised trials. Lancet 352:930–942.
R. C. Coombes, T. J Powles, U. Berger, P. Wilson, R. A. McClelland, J.-C. Gazet, P. A. Trott, and H. T. Ford (1987). Prediction of endocrine response in breast cancer by immunocytochemical detection of estrogen receptor in fine needle aspirates. Lancet 2:701–703.
T. A. Hopp and S. A. W. Fuqua (1998). Estrogen receptor variants. J. Mam. Gland Biol. Neoplasia 3(1):73–83.
C. K. Watts, M. L. Handel, R. J. King, and R. L. Sutherland (1992). Estrogen receptor gene structure and function in breast cancer. J. Steroid Biochem. Mol. Biol. 41(38):529–536.
S. Saji, E. V. Jensen, S. Nilsson, T. Rylander, M. Warner, and J.-A. Gustafsson (2000). Estrogen receptors α and β in the rodent mammary gland. Med. Sci. 97:337–342.
P. Pace, J. Taylor, S. Suntharalingam, R. C. Coombes, and S. Ali (1997). Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor α. J. Biol. Chem. 272:25832–25838.
S. M. Cowley, S. Hoare, S. Mosselman, and M. G. Parker (1997). Estrogen receptor α and β form heterodimers on DNA. J. Biol. Chem. 272:19858–19862.
S. Ogawa, S. Inoue, T. Watanabe, H. Hiroi, A. Orimo, T. Hosoi, Y. Ouchi, and M. Muramatsu (1998). The complete primary structure of human estrogen receptor β (hERBβ) and its heterodimerization with ERα in vivo and in vitro. Biochem. Biophys. Res. Commun. 243:122–126.
K. Pettersson, K. Grandien, G. G. Kuiper, and J. A. Gustafsson (1997). Mouse estrogen receptor β forms estrogen response element-binding heterodimers with estrogen receptor β. Mol. Endocrinol. 10:499–507.
A. J. Desai, Y. A. Luqmani, J. E. Walters, R. C. Coope, B. Dagg, J. J. Gomm, P. E. Pace, C. N. Rees, S. Shousha, N. P. Groome, R. C. Coombes, and S. Ali (1997). Presence of exon 5-deleted oestrogen receptor in human breast cancer: Functional analysis and clinical significance. Brit. J. Cancer 75:1173–1184.
H. Ohlsson, A. E. Lykkesfeldt, M. W. Madsen, and P. Briand (1998). The estrogen receptor variant lacking exon 5 has dominant negative activity in the human breast epithelial cell line HMT-3522S1. Cancer Res. 58(19):4264–4268.
T. Hunter and M. Karin (1992). The regulation of transcription by phosphorylation. Cell 70:375–387.
S. P. Jackson (1992). Regulating transcription factor activity by phosphorylation. Trends Cell Biol. 2:104–108.
M. Karin (1994). Signal transduction from the cell surface to the nucleus through phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6:415–424.
C. L. Smith (1998). Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol. Reprod. 58:627–632.
D. Shao and M. A. Lazar (1999). Modulating nuclear receptor function: May the phos be with you. J. Clin. Invest. 103:1617–1618.
K. E. Weis, K. Ekena, J. A. Thomas, G. Lazennec, and B. S. Katzenellenbogen (1996). Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10: 1388–1398.
R. White, M. Sjoberg, E, Kalkhoven, and M. G. Parker (1997). Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J. 16:1427–1435.
Q. X. Zhang, A. Borg, D. M. Wolf, S. Oesterreich, and S. A. Fuqua (1997). An estrogen receptor mutant with strong hormone-independent activity from ametastatic breast cancer. Cancer Res. 57(7):1244–1249.
S. F. Arnold, M. Melamed, D. P. Vorojeikina, A. C. Notides, and S. Sasson (1997). Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol. Encocrinol. 11(1):48–53.
D. Chen, P. E. Pace, R. C. Coombes, and S. Ali (1999). Phosphorylation of human estrogen receptor α by protein kinase A regulates dimerization. Mol. Cell. Biol. 19:1002–1015.
S. Ali, D. Metzger, J.-M Bornert, and P. Chambon (1993). Phosphorylation of the human oestrogen receptor. Identification of a phosphorylation site required for transactivation. EMBO J. 12:1153–1160.
P. Le Goff, M. M. Montano, D. J. Schodin, and B. S. Katzenellenbogen (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269:4458–4466.
P. B. Joel, J. Smith, T. W. Sturgill, T. L. Fisher, J. Blenis, and D. A. Lannigan (1998). pp90rsk1 regulates estrogen receptormediated transcription through phosphorylation of Ser-167. Mol. Cell Biol. 18:1978–1984.
I. Rogatsky, J. M. Trowbridge, and M. J. Garabedian (1999). Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J. Biol. Chem. 274:22296–222302.
S. Kato, H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. Chambon (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995:1491–1494.
G. Bunone, P.-E. Briand, R. J. Miksicek, and D. Picard (1996). Activation of the unliganded estrogen receptor by EFG involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15(9):2174–2183.
P. B. Joel, A. M. Traish, and D. A. Lannigan (1998). Estradiolinduced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J. Biol. Chem. 273:13317–13323.
D. Chen, T. Riedl, E. Washbrook, P. E. Pace, R. C. Coombes, J. M. Egly, and S. Ali (2000). Activation of Estrogen Receptor a by S118 Phosphorylation Involves a Ligand-Dependent Interaction with TFIIH and Participation of CDK7. Mol. Cell 6:127–137.
P. C. Gordge, M. J. Hulme, R. A. Clegg, and W. R. Miller (1996). Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. Eur. J. Cancer 32A(12):2120–2126.
W. R. Miller, R. A. Elton, J. M. Dixon, U. Chetty, and D. M. Watson (1990). Cyclic AMP binding proteins and prognosis in breast cancer. Brit. J. Cancer 61:263–266.
V. S. Sivaraman, H.-Y. Wang, G. J. Nuovo, and C. C. Malbon (1997). Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest. 99:1478–1483.
A. S. Coutts and L. C. Murphy (1998). Elevated mitogenactivated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res. 58:4071–4074.
O. M. Sobulo, J. Borrow, R. Tomek, S. Reshmi, A. Harden, B. Schlegelberger, D. Housman, N. A. Doggett, J. D. Rowley, and N. J. Zeleznik-Le (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. U.S.A. 94:8732–8737.
S. L. Anzick, J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968.
J. Xu, Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley (1998). Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925.
J. Xu et al. (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 97(12):6379–6384.
R. M. Lavinsky, K. Jepsen, T. Heinzel, J. Torchia, T. M. Mullen, R. Schiff, A. L. DelRio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, M. G. Rosenfeld, and D. W. Rose (1998). Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U.S.A. 95:2920–2925.
R. C. Stein, M. Dowsett, A. Hedley, J.-C. Gazet, H. T. Ford, and R. C. Coombes (1990). The clinical and endocrine effects of 4-hydroxyandrostenedione alone and in combination with goserelin in premenopausal women with advanced breast cancer. Brit. J. Cancer 62:679–683.
P. E. Lonning, S. Jacobs, A. Jones et al. (1991). The influence of CGS 16949A on peripheral aromatization in breast cancer patients. Brit. J. Cancer 63:789–793.
M. Dowsett, D. Doody, S. Miall, A. Howes, J. English, and R. C. Coombes (1999). Vorozole results in greater estrogen suppression than formestane in postmenopausal women and when added to goserelin in premenopausal women with advanced breast cancer. Breast Cancer Res. Treat. 56:25–34.
C. Harper-Wynne and R. C. Coombes (1999). Anastrozole shows evidence of activity in postmenopausal patients who have responded or stabilized on formestane therapy. Eur. J. Cancer 35:744–746.
R. Murray and P. Pitt (1995). Aromatase inhibition with 4-OH Androstendione after prior aromatase inhibition with aminoglutethimide in women with advanced breast cancer. Breast Cancer Res. Treat. 35:249–253.
B. Thurlimann, R. Paridaens, and D. Serin et al. (1997). Thirdline hormonal treatment with exemestane in postmenopausal patients with advanced breast cancer progressing on aminoglutethimide: A phase II multi center multinational study. Eur. J. Cancer 33:1767–1773.
M.-H. Jeng, M. A. Shupnik, T. P. Bender, E. H. Westin, D. Bandyopadhyay, R. Kumar, S. Masamura, and R. J. Santen (1998). Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology 139(10):4164–4174.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ali, S., Coombes, R.C. Estrogen Receptor Alpha in Human Breast Cancer: Occurrence and Significance. J Mammary Gland Biol Neoplasia 5, 271–281 (2000). https://doi.org/10.1023/A:1009594727358
Issue Date:
DOI: https://doi.org/10.1023/A:1009594727358