[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Resonantlike Synchronization and Bursting in a Model of Pulse-Coupled Neurons with Active Dendrites

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We analyze the dynamical effects of active, linearized dendritic membranes on the synchronization properties of neuronal interactions. We show that a pair of pulse-coupled integrate-and-fire neurons interacting via active dendritic cables can exhibit resonantlike synchronization when the frequency of the oscillators is approximately matched to the resonant frequency of the membrane impedance. For weak coupling the neurons are phase-locked with constant interspike intervals whereas for strong coupling periodic bursting patterns are observed. This bursting behavior is reflected by the occurrence of a Hopf bifurcation in the firingrates of a corresponding rate-coded model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF, Farhi E, Gutmann S (1991) The path integral for dendritic trees. Biol. Cybern. 66:61–70.

    Google Scholar 

  • Abbott LF, Kepler TB (1991) Model neurons: From Hodgkin-Huxley to Hopfield. In: L Garrido, ed. Statistical Mechanics of Neural Networks. Lecture Notes in Physics 368:5–18.

  • Amitai Y, Friedman A, Connors BW, Gutnick MJ (1993) Regenerative activity in the apical dendrites of pyramidal cells in neocortex. Cereb. Cortex 3:26–38.

    Google Scholar 

  • Bressloff PC (1994) Dynamics of compartmental model recurrent neural networks. Phys. Rev. E 50:2308–2319.

    Google Scholar 

  • Bressloff PC (1995) Dynamics of a compartmental model integrateand-fire neuron with somatic potential reset. Physica D 80:399–412.

    Google Scholar 

  • Bressloff PC, Coombes S (1997) Physics of the extended neuron. Int. J. Mod. Phys. 11:2343–2392.

    Google Scholar 

  • Bressloff PC, Coombes S (1998a). Desynchronization, modelocking and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett. 81:2168–2171.

    Google Scholar 

  • Bressloff PC, Coombes S (1998b) Dynamics of strongly coupled spiking neurons. Neural Comput., in press.

  • Bressloff PC, de Souza B (1998) Neural pattern formation in networks with dendritic structure. Physica D 115:124–144.

    Google Scholar 

  • Chow CC (1998) Phase-locking in weakly heterogeneous neuronal networks. Physica D 118:343–370.

    Google Scholar 

  • Coss RG, Perkel DH (1985) The function of dendritic spines: A review of theoretical issues. Behav. Neural. Biol. 44:151–185.

    Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J. Physiol. 312:377–412.

    Google Scholar 

  • Crook SM, Ermentrout GB, Bower JM (1998) Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comp. Neurosci. 5:315–329.

    Google Scholar 

  • Crook SM, Ermentrout GB, Vanier M, Bower JM (1997) The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Comp. Neurosci. 4:161–172.

    Google Scholar 

  • Gerstner W (1995) Time structure of the activity in neural-network models. Phys. Rev. E 51:738–758.

    Google Scholar 

  • Gerstner W, van Hemmen JL, Cowan JD (1996) What matters in neuronal locking. Neural Comput. 8:1689–1712.

    Google Scholar 

  • Jackson ME, Cauller LJ (1997) Evaluation of simplified compartmental models of reconstructed neocortical neurons for use in large-scale simulations of biological neural networks. Brain Res. Bull. 44:7–17.

    Google Scholar 

  • Jaeger D, De Schutter E, Bower JM (1997) The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: A modeling study. J. Neurosci. 17:91–106.

    Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annual Rev. Neurosci. 19:165–186.

    Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9:1015–1045.

    Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol. Cybern. 50:15–33.

    Google Scholar 

  • Koch C, Poggio T (1983) A theoretical analysis of electrical properties of spines. Proc. Roy. Soc. Lond. B 218:455–477.

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366.

    Google Scholar 

  • Mel BW (1994) Information processing in dendritic trees. Neuro. Comput. 6:1031–1085.

    Google Scholar 

  • Miller JP, Rall W, Rinzel J (1985) Synaptic amplification by active membrane in dendritic spines. Brain Res. 325:325–330.

    Google Scholar 

  • Perkel DH, Mulloney B, Budelli RW (1981) Quantitative methods for predicting neuronal behaviour. Neurosci. 6:823–837.

    Google Scholar 

  • Poggio T, Torre V (1977) A new approach to synaptic interactions. Lecture notes in biomathematics 21:89–115.

    Google Scholar 

  • Poolos NP, Kocsis JD (1990) Dendritic action potentials activated by NMDA receptor-mediated EPSPs in CA1 hippocampal pyramidal cells. Brain Res. 524:342–346.

    Google Scholar 

  • Qian N, Sejnowski TJ (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol. Cybern. 62:1–15.

    Google Scholar 

  • Rall W(1962) Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci. 96:1071–1092.

    Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: R Reiss, ed. Neural Theory and Modelling. Stanford University Press, Stanford.

    Google Scholar 

  • Rall W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods of Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge, MA, pp. 9–62.

    Google Scholar 

  • Segev I, Fleshman JW, Burke RE (1989) Compartmental models of complex neurons. In: C Koch, I Segev, eds. Methods of Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge, MA, pp. 63–96.

    Google Scholar 

  • Shepherd GM, Brayton RK (1987) Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21:15–166.

    Google Scholar 

  • Stuart G, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature Lond. 367:69–72.

    Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons dendrites. Nature Lond. 385:161–165.

    Google Scholar 

  • Torre V, Owen WG (1983) High-pass filtering of small signals by the rod network in the retina of the toad Bufo Marinus. J. Biophys. 41:305–324.

    Google Scholar 

  • Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge, MA, Vol. 1.

    Google Scholar 

  • van Vreeswijk C (1996) Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E. 54:5522–5537.

    Google Scholar 

  • van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci. 1:313–321.

    Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5:5–16.

    Google Scholar 

  • Wong RK, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc. Natl. Acad. Sci. USA 76:986–990.

    Google Scholar 

  • Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci. USA 87:6718–6722.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressloff, P.C. Resonantlike Synchronization and Bursting in a Model of Pulse-Coupled Neurons with Active Dendrites. J Comput Neurosci 6, 237–249 (1999). https://doi.org/10.1023/A:1008853805855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008853805855

Navigation