[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Some Applications of the Ultrapower Theorem to the Theory of Compacta

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The ultrapower theorem of Keisler and Shelah allows such model-theoretic notions as elementary equivalence, elementary embedding and existential embedding to be couched in the language of categories (limits, morphism diagrams). This in turn allows analogs of these (and related) notions to be transported into unusual settings, chiefly those of Banach spaces and of compacta. Our interest here is the enrichment of the theory of compacta, especially the theory of continua, brought about by the importation of model-theoretic ideas and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B.: More on compact Hausdorff spaces and finitary duality, Canad. J. Math. 36(1984), 1113–1118.

    Google Scholar 

  2. Bankston, P.: Reduced coproducts of compact Hausdorff spaces, J. Symbolic Logic 52(1987), 404–424.

    Google Scholar 

  3. Bankston, P.: Model-theoretic characterizations of arcs and simple closed curves, Proc. Amer. Math. Soc. 104(1988), 898–904.

    Google Scholar 

  4. Bankston, P.: Co-elementary equivalence for compact Hausdorff spaces and compact Abelian groups, J. Pure Appl. Algebra 68(1990), 11–26.

    Google Scholar 

  5. Bankston, P.: Taxonomies of model-theoretically defined topological properties, J. Symbolic Logic 55(1990), 589–603.

    Google Scholar 

  6. Bankston, P.: Co-elementary equivalence, co-elementary maps, and generalized arcs, Proc. Amer. Math. Soc. 125(1997), 3715–3720.

    Google Scholar 

  7. Bankston, P.: On the topological model theory of normal disjunctive lattices (submitted).

  8. Bankston, P.: A hierarchy of maps between compacta, J. Symbolic Logic(to appear).

  9. Chang, C. C. and Keisler, H. J.: Model Theory, Third edn., North-Holland, Amsterdam, 1989.

  10. Dacunha-Castelle, D. and Krivine, J.: Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math. 41(1972), 315–334.

    Google Scholar 

  11. Eklof, P.: Ultraproducts for algebraists, in Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 105–137.

  12. Engelking, R.: Outline of General Topology, North-Holland, Amsterdam, 1968.

  13. Gurevič, R.: On ultracoproducts of compact Hausdorff spaces, J. Symbolic Logic 53(1988), 294–300.

    Google Scholar 

  14. Heinrich, S. and Henson, C. W.: Model theory of Banach spaces, II: Isomorphic equivalence, Math. Nachr. 125(1986), 301–317.

    Google Scholar 

  15. Heinrich, S., Henson, C. W. and Moore, L. C., Jr.: A note on elementary equivalence of C.K/spaces, J. Symbolic Logic 52(1987), 368–373.

    Google Scholar 

  16. Henson, C. W.: Nonstandard hulls of Banach spaces, Israel J. Math. 25(1976), 108–144.

    Google Scholar 

  17. Henson, C.W.: Nonstandard analysis and the theory of Banach spaces, Lecture Notes in Math. 983, Springer, 1983, pp. 27–112.

    Google Scholar 

  18. Henson, C. W. and Iovino, J.: Banach Space Model Theory, I (lecture notes monograph, in preparation).

  19. Hodges, W.: Model Theory, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  20. Kuratowski, K.: Topology, Vol. II, Academic Press, New York, 1968.

    Google Scholar 

  21. Macintyre, A.: Model completeness, in Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 139–180.

  22. Nadler, S. B., Jr.: Continuum Theory, An Introduction, Marcel Dekker, New York, 1992.

    Google Scholar 

  23. Quine, W. V. O.: Word and Object, The MIT Press, Cambridge, MA, 1960.

    Google Scholar 

  24. Rosický, J.: Categories of models, Seminarberichte Mathematik Informatik Fernuniversität 19(1984), 337–413.

    Google Scholar 

  25. Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers, Israel J. Math. 10(1971), 224–233.

    Google Scholar 

  26. Simmons, G. F.: Introduction to Topology and Modern Analysis, McGraw-Hill, New York, 1963.

    Google Scholar 

  27. Wallman, H.: Lattices and topological spaces, Ann. Math. (2) 39(1938), 112–126.

    Google Scholar 

  28. Willard, S.: General Topology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bankston, P. Some Applications of the Ultrapower Theorem to the Theory of Compacta. Applied Categorical Structures 8, 45–66 (2000). https://doi.org/10.1023/A:1008668011406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008668011406

Navigation