Abstract
The ultrapower theorem of Keisler and Shelah allows such model-theoretic notions as elementary equivalence, elementary embedding and existential embedding to be couched in the language of categories (limits, morphism diagrams). This in turn allows analogs of these (and related) notions to be transported into unusual settings, chiefly those of Banach spaces and of compacta. Our interest here is the enrichment of the theory of compacta, especially the theory of continua, brought about by the importation of model-theoretic ideas and techniques.
Similar content being viewed by others
References
Banaschewski, B.: More on compact Hausdorff spaces and finitary duality, Canad. J. Math. 36(1984), 1113–1118.
Bankston, P.: Reduced coproducts of compact Hausdorff spaces, J. Symbolic Logic 52(1987), 404–424.
Bankston, P.: Model-theoretic characterizations of arcs and simple closed curves, Proc. Amer. Math. Soc. 104(1988), 898–904.
Bankston, P.: Co-elementary equivalence for compact Hausdorff spaces and compact Abelian groups, J. Pure Appl. Algebra 68(1990), 11–26.
Bankston, P.: Taxonomies of model-theoretically defined topological properties, J. Symbolic Logic 55(1990), 589–603.
Bankston, P.: Co-elementary equivalence, co-elementary maps, and generalized arcs, Proc. Amer. Math. Soc. 125(1997), 3715–3720.
Bankston, P.: On the topological model theory of normal disjunctive lattices (submitted).
Bankston, P.: A hierarchy of maps between compacta, J. Symbolic Logic(to appear).
Chang, C. C. and Keisler, H. J.: Model Theory, Third edn., North-Holland, Amsterdam, 1989.
Dacunha-Castelle, D. and Krivine, J.: Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Studia Math. 41(1972), 315–334.
Eklof, P.: Ultraproducts for algebraists, in Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 105–137.
Engelking, R.: Outline of General Topology, North-Holland, Amsterdam, 1968.
Gurevič, R.: On ultracoproducts of compact Hausdorff spaces, J. Symbolic Logic 53(1988), 294–300.
Heinrich, S. and Henson, C. W.: Model theory of Banach spaces, II: Isomorphic equivalence, Math. Nachr. 125(1986), 301–317.
Heinrich, S., Henson, C. W. and Moore, L. C., Jr.: A note on elementary equivalence of C.K/spaces, J. Symbolic Logic 52(1987), 368–373.
Henson, C. W.: Nonstandard hulls of Banach spaces, Israel J. Math. 25(1976), 108–144.
Henson, C.W.: Nonstandard analysis and the theory of Banach spaces, Lecture Notes in Math. 983, Springer, 1983, pp. 27–112.
Henson, C. W. and Iovino, J.: Banach Space Model Theory, I (lecture notes monograph, in preparation).
Hodges, W.: Model Theory, Cambridge University Press, Cambridge, 1993.
Kuratowski, K.: Topology, Vol. II, Academic Press, New York, 1968.
Macintyre, A.: Model completeness, in Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 139–180.
Nadler, S. B., Jr.: Continuum Theory, An Introduction, Marcel Dekker, New York, 1992.
Quine, W. V. O.: Word and Object, The MIT Press, Cambridge, MA, 1960.
Rosický, J.: Categories of models, Seminarberichte Mathematik Informatik Fernuniversität 19(1984), 337–413.
Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers, Israel J. Math. 10(1971), 224–233.
Simmons, G. F.: Introduction to Topology and Modern Analysis, McGraw-Hill, New York, 1963.
Wallman, H.: Lattices and topological spaces, Ann. Math. (2) 39(1938), 112–126.
Willard, S.: General Topology, Addison-Wesley, Reading, MA, 1970.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bankston, P. Some Applications of the Ultrapower Theorem to the Theory of Compacta. Applied Categorical Structures 8, 45–66 (2000). https://doi.org/10.1023/A:1008668011406
Issue Date:
DOI: https://doi.org/10.1023/A:1008668011406