[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Free Adjunction of Morphisms

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We develop a general setting for the treatment of extensions of categories by means of freely adjoined morphisms. To this end, we study what we call composition graphs, i.e. large graphs with a partial binary operation on which we impose only rudimentary requirements. The quasicategory thus obtained contains the quasicategory of all categories as a full reflective subquasicategory; we characterize composition graphs for which this reflexion is of a particularly simple nature.

This leads to the concept of semicategory; we apply semicategories to solve characterization problems concerning absolutely initial sources, absolute monosources and potential sections. For instance, we show that in any category, the absolutely initial sources are precisely the sources that contain a section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley Interscience, New York, 1990.

    Google Scholar 

  2. Coppey, L.: —Décompositions directes des précategories, Math. Arbeitspapiere 7 (1976), University of Bremen, 26–41.

    Google Scholar 

  3. Coppey, L.: —Quelques problèmes typiques concernant les graphes multiplicatifs, Diagrammes 3 (1980), C1–C46.

    Google Scholar 

  4. Coppey, L.: —Sur quelques structures de base pour définir les structures, Diagrammes 7 (1982), C1–C23.

    Google Scholar 

  5. Coppey, L.: —Graphes structuraux, Diagrammes 24 (1990), 33–76.

    Google Scholar 

  6. Cury, F.: —Systèmes de générateurs et relations pour les catégories enrichies, Diagrammes 1 (1979), C1–C21.

    Google Scholar 

  7. Dikranjan, D. and Tholen, W.: Categorical Structure of Closure Operators, Kluwer Acad. Publ., Dordrecht, 1995.

    Google Scholar 

  8. Ehresmann, C.: Catégories et structures, Dunod, Paris, 1965.

    Google Scholar 

  9. Ehresmann, C. and Ehresmann, A. C.: Categories of sketched structures, Cahiers Topologie Géom. Differentielle Catég. 13 (1972), 105–214.

    Google Scholar 

  10. Henry, C.: —Sur quelques problèmes de plongement en algèbre: II. Extensions de Kan et prolongements de foncteurs à des graphes multiplicatifs, Diagrammes 15 (1986), H1–H13.

    Google Scholar 

  11. Hong, S. S.: Categories in which every monosource is initial, Kyungpook Math. J. 15 (1975), 133–139.

    Google Scholar 

  12. Paré, R.: On absolute colimits, J. Algebra 19 (1971), 80–95.

    Google Scholar 

  13. Pumplün, D.: Initial morphisms and monomorphisms, Manuscripta Math. 32 (1980), 309–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, L., Herrlich, H. Free Adjunction of Morphisms. Applied Categorical Structures 8, 595–606 (2000). https://doi.org/10.1023/A:1008651618062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008651618062

Navigation