Abstract
We develop a general setting for the treatment of extensions of categories by means of freely adjoined morphisms. To this end, we study what we call composition graphs, i.e. large graphs with a partial binary operation on which we impose only rudimentary requirements. The quasicategory thus obtained contains the quasicategory of all categories as a full reflective subquasicategory; we characterize composition graphs for which this reflexion is of a particularly simple nature.
This leads to the concept of semicategory; we apply semicategories to solve characterization problems concerning absolutely initial sources, absolute monosources and potential sections. For instance, we show that in any category, the absolutely initial sources are precisely the sources that contain a section.
Similar content being viewed by others
References
Adamek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley Interscience, New York, 1990.
Coppey, L.: —Décompositions directes des précategories, Math. Arbeitspapiere 7 (1976), University of Bremen, 26–41.
Coppey, L.: —Quelques problèmes typiques concernant les graphes multiplicatifs, Diagrammes 3 (1980), C1–C46.
Coppey, L.: —Sur quelques structures de base pour définir les structures, Diagrammes 7 (1982), C1–C23.
Coppey, L.: —Graphes structuraux, Diagrammes 24 (1990), 33–76.
Cury, F.: —Systèmes de générateurs et relations pour les catégories enrichies, Diagrammes 1 (1979), C1–C21.
Dikranjan, D. and Tholen, W.: Categorical Structure of Closure Operators, Kluwer Acad. Publ., Dordrecht, 1995.
Ehresmann, C.: Catégories et structures, Dunod, Paris, 1965.
Ehresmann, C. and Ehresmann, A. C.: Categories of sketched structures, Cahiers Topologie Géom. Differentielle Catég. 13 (1972), 105–214.
Henry, C.: —Sur quelques problèmes de plongement en algèbre: II. Extensions de Kan et prolongements de foncteurs à des graphes multiplicatifs, Diagrammes 15 (1986), H1–H13.
Hong, S. S.: Categories in which every monosource is initial, Kyungpook Math. J. 15 (1975), 133–139.
Paré, R.: On absolute colimits, J. Algebra 19 (1971), 80–95.
Pumplün, D.: Initial morphisms and monomorphisms, Manuscripta Math. 32 (1980), 309–333.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schröder, L., Herrlich, H. Free Adjunction of Morphisms. Applied Categorical Structures 8, 595–606 (2000). https://doi.org/10.1023/A:1008651618062
Issue Date:
DOI: https://doi.org/10.1023/A:1008651618062