Abstract
In this paper we provide upper and lower bounds on the randomness required by the dealer to set up a secret sharing scheme for infinite classes of access structures. Lower bounds are obtained using entropy arguments. Upper bounds derive from a decomposition construction based on combinatorial designs (in particular, t-(v,k,λ) designs). We prove a general result on the randomness needed to construct a scheme for the cycle Cn; when n is odd our bound is tight. We study the access structures on at most four participants and the connected graphs on five vertices, obtaining exact values for the randomness for all them. Also, we analyze the number of random bits required to construct anonymous threshold schemes, giving upper bounds. (Informally, anonymous threshold schemes are schemes in which the secret can be reconstructed without knowledge of which participants hold which shares.)
Similar content being viewed by others
References
R. Baker, Partitioning the Planes of AG 2m (2) into 2-designs, Discrete Math., Vol. 15 (1976), pp. 205–211.
J. C. Benaloh and J. Leichter, Generalized Secret Sharing and Monotone Functions, in Advances in Cryptology — Crypto '88, Lecture Notes in Computer Science, Vol. 403 (1990), pp. 27–35.
T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Bibliographisches Institut, Zurich, 1985.
G. R. Blakley, Safeguarding Cryptographic Keys, Proceedings of AFIPS 1979 National Computer Conference, Vol. 48 (1979), pp. 313–317.
C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, On the Information Rate of Secret Sharing Schemes, Theoretical Computer Science, Vol. 154 (1996), 283–306.
C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro, Graph Decompositions and Secret Sharing Schemes, Journal of Cryptology, Vol. 8 (1995), pp. 39–64.
C. Blundo, A. De Santis, and U. Vaccaro, Randomness in Distribution Protocols, Technical Report, Università di Salerno. [A preliminary version appeared in 21st International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 820 (dy1994), pp. 568–579.]}
C. Blundo, A De Santis, and U. Vaccaro, On Secret Sharing Schemes, Technical Report, Università di Salerno, 1995.
C. Blundo, A. Giorgio Gaggia, and D. R. Stinson, On the Dealer's Randomness Required in Secret Sharing Schemes, Advances in Cryptology — EUROCRYPT '94, Lecture Notes in Computer Science, Vol. 950 (1995), pp. 35–46.
C. Blundo and D. R. Stinson, Anonymous Secret Sharing Schemes, submitted for publication.
E. F. Brickell and D. M. Davenport, On the Classification of Ideal Secret Sharing Schemes, J. Cryptology, Vol. 4 (1991), pp. 123–134.
E. F. Brickell and D. R. Stinson, Some Improved Bounds on the Information Rate of Perfect Secret Sharing Schemes, J. Cryptology, Vol. 5 (1992), pp. 153–166.
R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, A Note on Secret Sharing Schemes, Sequences II: Methods in Communication, Security and Computer Science, Springer-Verlag, 1991, pp. 335–344.
R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the Size of Shares for Secret Sharing Schemes, J. Cryptology, Vol. 6 (1993), pp. 157–169.
C. J. Colbourn and J. H. Dinitz, CRC Handbook on Combinatorial Designs, CRC Press, Inc, 1996.
T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.
O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game, Proceedings of 19th ACM Symposium on Theory of Computing, 1987, pp. 218–229.
H. Hanani, On Quadruple Systems, Canad. J. Math., Vol. 12 (1960), pp. 145–157.
H. Hanani, On Some Tactical Configurations, Canad. J. Math., Vol. 15 (1963) pp. 702–722.
H. Hanani, D. K. Ray-Chaudhuri, and R. M. Wilson, On Resolvable Designs, Discrete Math., Vol. 3 (1972), pp. 343–357.
R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proceedings 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 248–255.
M. Ito, A. Saito, and T. Nishizeki, Secret Sharing Scheme Realizing General Access Structure, Globecom '87, 1987, pp. 99–102.
E. D. Karnin, J. W. Greene, and M. E. Hellman, On Secret Sharing Systems, IEEE Trans. Inform. Theory, Vol. 29 (1983), pp. 35–41.
D. E. Knuth and A.C. Yao, The Complexity of Nonuniform Random Number Generation, Algorithms and Complexity, Academic Press, 1976, pp. 357–428.
D. Krizanc, D. Peleg, and E. Upfal, A Time-Randomness Tradeoff for Oblivious Routing, Proceedings 20th ACM Symposium on Theory of Computing, 1988, pp. 93–102.
J. X. Lu, On Large Sets of Disjoint Steiner Triple Systems I, II and II, J. Combin. Theory A, Vol. 34 (1983), pp. 140–182.
J. X. Lu, On Large Sets of Disjoint Steiner Triple Systems IV, V and VI, J. Combin. Theory A, Vol. 37 (1984), pp. 136–192.
K. M. Martin, New Secret Sharing Schemes from Old, J. Combin. Math. Combin. Comput. Vol. 14 (1993), pp. 65–77.
S. J. Phillips and N. C. Phillips, Strongly Ideal Secret Sharing Schemes, J. Cryptology, Vol. 5 (1992), pp. 185–191.
D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's Schoolgirl Problem, Amer. Math. Soc. Proc. Symp. Pure Math., Vol. 19 (1971), pp. 187–204.
P. J. Schellenberg and D. R. Stinson, Threshold Schemes from Combinatorial Designs, J. Combin. Math. Combin. Comput., Vol. 5 (1989), pp. 143–160.
A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22 (1979), pp. 612–613.
G. J. Simmons, An Introduction to Shared Secret and/or Shared Control Schemes and Their Application, Contemporary Cryptology, IEEE Press, 1991, pp. 441–497.
D. R. Stinson, New General Lower Bounds on the Information Rate of Secret Sharing Schemes, Advances in Cryptology-CRYPTO '92, Lecture Notes in Computer Science, Vol. 740 (1993), pp. 170–184.
D. R. Stinson, An Explication of Secret Sharing Schemes, Designs, Codes and Cryptography, Vol. 2 (1992), pp. 357–390.
D. R. Stinson, Decomposition Constructions for Secret Sharing Schemes, IEEE Trans. Inform. Theory, Vol. 40 (1994), pp. 118–125.
D. R. Stinson, Combinatorial Designs and Cryptography, Surveys in Combinatorics, 1993, Cambridge Univ. Press, 1993, pp. 257–287.
D. R. Stinson, Bibilography on Secret Sharing Schemes, available online at the following URL: http://bibd.unl.edu/∼stinson/ssbib.html
D. R. Stinson and A. Vanstone, A Combinatorial Approach to Threshold Schemes, SIAM J. Discrete. Math., Vol. 1 (1988), pp. 230–236.
L. Teirlinck, A Completion of Lu's Determination of the Spectrum for Large Sets of Disjoint Steiner Triple Systems, J. Combin. Theory A, Vol. 57 (1991), pp. 302–305.
L. Teirlinck, Some New 2-resolvable Steiner Quadruple Systems, Designs, Codes and Cryptography, Vol, 4 (1994), pp. 5–10.
L. Teirlinck, Large Sets of Disjoint Designs and Related Structures, Contemporary Design Theory: A Collection of Surveys, John Wiley & Sons, 1992 pp. 561–592.
G. V. Zaicev, V. A. Zinoviev, and N. V. Semakov, Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double Error-Correcting Codes, Proc. 2nd International Symp. Inform. Theory, 1973, pp. 257–263.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blundo, C., Gaggia, A.G. & Stinson, D.R. On the Dealer's Randomness Required in Secret Sharing Schemes. Designs, Codes and Cryptography 11, 235–259 (1997). https://doi.org/10.1023/A:1008242111272
Issue Date:
DOI: https://doi.org/10.1023/A:1008242111272