Abstract
In this paper, we introduce a local extrapolation method (LEM) for the essentially non-oscillatory (ENO) schemes solving nonlinear hyperbolic conservation laws. The method extrapolates the numerical flux of the underlying scheme so that it keeps conservativity. We use a minmod type limiter to avoid spurious oscillations. We propose a new balancing technique that preserves the symmetry of a symmetric wave that works well for a wide range of CFL numbers. We also introduce two artificial compression procedures to the LEM which yield sharp resolutions of contact discontinuities. Numerical examples are presented to illustrate the performance of the method.
Similar content being viewed by others
REFERENCES
Boris, J. P., and Books, D. L. (1973). Flux-corrected transport I:SHAS TA, a fluid trans-port algorithm that works. J. Compute. Pays. 11, 38–69.
Cern, I.-L., Glimm, J., McBryan, U., Plohr, B., and Yaniv, S. (1986). Front tracking for gas dynamics. J. Comput. Phys. 62, 83–110.
Chern, I.-L., and Collela, P. (1986). A conservative front tracking method for hyperbolic conservation laws, preprint.
Cockburn, B., Lin, S.-Y., and Shu C.-W. (1989). TVB Runge-Kutta local projection dis-continuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84, No. 1, 90–113.
Cockburn, B., Hou S., and Shu, C.-W. (1990). The Runge_Kutta local projection discon-tinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. v54, 545–581.
Glimm, J., Grove, J., Lindquist, B., McBryan, O., and Tryggvanson, G. (1988). The bifur-cation of tracked scalar wave. SIAM J. Sci. Statist. Comput. 7, 61–79.
Goodman J. B., and LeVeque, R. J. (1988). A geometric approach to high resolution TVD schemes. SIAM J. Numer. Anal. 25, 268–284.
Harten, A. (1991). Recent developments in shock-capturing schemes. In Proceedings of the International Congress of Mathematicians, Vols. I and II (Kyoto, 1990), pp. 1549–1559, Math. Soc. Japan, Tokyo.
Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393.
Harten, A. (1978). The artificial compression method for computation of shocks and con-tact discontinuities: III. Self-adjusting hybrid schemes. Math. Comp. 32, 363–389.
Harten, A. (1989). ENO schemes with subcell resolution. J. Comp. Phys. 83, 148–184.
Harten, A. (1995). Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, No. 12, 1305–1342.
Harten, A., and Osher, S. (1987). Uniformly high order accurate non-oscillatory schemes, I. SIAM J. Numer. Anal. 24, 279.
Harten, A., Osher, S., Engquist, B., and Chakravarthy, S. (1986). Some results on uniformly high order accurate essentially non-oscillatory schemes. J. Appl. Numer. Math. 2, 347.
Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231.
Hannappel, R., Hauser, T., and Friedrich, R. (1995). A comparison of ENO and TVD schemes for the computation of shock-turbulence interaction. J. Comput. Phys. 121, 176–184.
Huynh, H. T. (1995). Accurate upwind methods for the Euler equations. SIAM J. Numer. Anal. 32, 1565–1620.
Iserles, A., and Strang, G. (1983). The optimal accuracy of difference schemes. Trans. Amer. Math. Soc. 277, 779.
Jeng, J.-H., and Payne, U.-J. (1995). An adaptive TVD limiter. J. Comput. Phys. 118, 229–241.
Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, No. 1, 202–228.
Jin, B. X. (1993). An artificial compression method for the computation of contact discon-tinuity. Comp. Math. (China.) 1, 121.
Lappaz, T., Leonard, A., and Dimotakis, P. E. (1993). An adaptive Lagrangian method for computing 1D reacting and non-reacting flows. J. Comput. Phys. 104, 361–376.
Lavery, J. E. (1993). Capturing contact discontinuities in steady-state conservation laws. J. Comput. Phys. 108, 59–72.
Lax, P. D., and Wendroff, B. (1990). Systems of Conservation Laws, Comm. Pure Appl. Math., Vol. 13 (1990), pp. 217–237.
LeVeque, J., and Shyue, K. M. (1992). Shock tracking based on high resolution wave propagation methods, Technical Report 29–3, University of Washington, Seattle.
Li, X. L., Jin, B. X., and Glimm, J. (1995). Numerical study for the three dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation. SUNYSB-AMS-95–03.
Liem, C. B., Lü, T., and Shih, T. M. (1995). The splitting extrapolation method. A new technique in numerical solution of multidimensional problems. With a preface by Zhong-ci Shi, Series on Applied Mathematics, 7. World Scientific Publishing Co., Inc., River Edge, NJ.
Zhu, Q.-D., and Lin, Q. (1989). The hyperconvergence theory of finite elements, (Chinese) Hunan Science and Technology Publishing House, Changsha.
Liu, X.-D., and Osher, S. (1996). Nonoscillatory high order accurate self-similar maxi-mum principle satisfying shock capturing schemes. I. SIAM J. Numer. Anal. 33, No. 2, 760–779.
Liu, X.-D., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212.
Loh, C. Y., and Hui, W. H. (1990). A new Lagrangian method for steady supersonic flow computation. J. Comput. Phys. V89, No. 1.
Mao, D. (1993). A treatment of discontinuities for finite difference methods in the two-dimensional case. J. Comput. Phys. 104, 377–397.
Perthame, B. (1992). Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, No. 1, 1–19.
Richtmyer, R. D., and Morton, K. W. (1967). Difference methods for initial-value problems, Wiley-Interscience.
Roe, P. L. (1981). Numerical algorithms for the linear wave equations, Royal Aircraft Establishment Technical Report 81047.
Roe, P. L. (1991). Discontinuous solutions to hyperbolic systems under operator splitting. Numer. Met. Part. Diff. Equ. 7, 277–297.
Shu, C.-W. (1987). TVB uniformly high-order schemes for conservation laws. Math. Comp. 49, No. 179, 105–121.
Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comp. Phys. 83, 32.
Sweby, P. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995.
Van Leer, B. (1974). Towards the ultimate conservative differrence schemes II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370.
Van Leer, B. (1979). Towards the ultimate conservative differrence schemes V. A second order sequel to Godunov's method. J. Comput. Phys. 32, 101–136.
Woodward, P., and Colella, P. (1984). The piecewise-parabolic method (P PM) for gas-dynamical simulations. J. Comput. Phys. 54, 115.
Wu, L. (1997). Linear stability of the local extrapolation method for conservative approximation to the advective equation, Thesis, Kansas State University.
Yang, H. (1990). An artificial compression method for ENO schemes: the slope modifica-tion method. J. Comput. Phys. V 89, No. 1, 125.
Zhu, Y. L., Zhong, X. C., Chen, B. M., and Zhang, Z. M. (1980). Difference methods for initial-boundary problems and flows around bodies, Science Press, Beijing, China.
Zalesak, S. T. (1987). A preliminary comparison of modern shock-capturing schemes: Linear advections. In Vichnevetsky, R., and Stepleman, R. S. (eds.), Advances in Computer Methods for Partial Diferential Equations, VI, IMACS, pp. 15–22.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yang, H. A Local Extrapolation Method for Hyperbolic Conservation Laws. I. The ENO Underlying Schemes. Journal of Scientific Computing 15, 231–264 (2000). https://doi.org/10.1023/A:1007685827323
Issue Date:
DOI: https://doi.org/10.1023/A:1007685827323