[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Selective Involvement of Reactive Oxygen Intermediates in Platelet-activating Factor-mediated Activation of NF-κB

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Although it has been suggested that some biological activities of platelet-activating factor (PAF) are mediated by, at least in part, reactive oxygen intermediates (ROI), the precise mechanisms underlying the interaction between the two remains to be elucidated. Antioxidants, such as α-tocopherol acid succinate, N-acetyl-L-Cysteine, pyrrolidinedithiocarbamate failed to inhibit PAF-induced immediate systemic reactions such as lethality, symptoms of disseminated intravascular coagulation, and histological changes such as pulmonary edema and hemorrhage in renal medullae 10 min following PAF injection. In contrast, antioxidants significantly inhibited both the in vivo and in vitro PAF-induced NF-κB activation and NF-κB-dependent TNF-α expression. The effects of the antioxidants were due to their inhibition of PAF-induced degradation of IκBα, a protein responsible for keeping NF-κB in an inactive form. A protein tyrosine kinase and N-tosyl-L-phenylalanine chloromethyl ketone sensitive serine protease were involved in both PAFand H2O2-induced NF-κB activation. Collectively, these data indicate that the PAF-induced NF-κB activation is selectively mediated through the generation of ROI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. GAY, J. C. 1993. Mechanism and regulation of neutrophil priming by platelet-activating factor. J. Cell. Physiol. 156:189-197.

    Google Scholar 

  2. FUKUDA, A. I., and K. F. BREUEL. 1996. Effect of platelet-activating factor on embryonic development and implantation in the mouse. Hum. Reprod. 11:2746-2749.

    Google Scholar 

  3. SHUKLA, S. D. 1992. Platelet-activating factor receptor and signal transduction mechanisms. FASEB J. 6:2296-2301.

    Google Scholar 

  4. BUTTKE, T. M., and P. A. SANDSTROM. 1995. Redox regulation of programmed cell death in lymphocytes. Free. Radic. Res. 22:389-397.

    Google Scholar 

  5. BRAQUET, P., L. TOUQUI, T. Y. SHEN, and B. B. VARGAFTIG. 1987. Perspectives in platelet-activating factor research. Pharmacol. Rev. 39:97-145.

    Google Scholar 

  6. BARNES, P. J. 1992. PAF, eosinophils and asthma. J. Lipid. Mediat. 5:155-158.

    Google Scholar 

  7. BRAQUET, P., A. ETIENNE, C. TOUVAY, R. H. BOURGAIN, J. LEFORT, and B. B. VARGAFTIG. 1985. Involvement of platelet-activating factor in respiratory anaphylaxis, demonstrated by PAF-acether inhibitor BN52021. Lancet 1(8444): 1501.

    Google Scholar 

  8. IM, S. Y., H. M. KO, Y. S. KO, J. W. KIM, H. K. LEE, T. Y. HA, H. B. LEE, S. J. OH, S. BAI, K. C. CHUNG, Y. B. LEE, H. S. KANG, and S. B. CHUN. 1996. Augmentation of tumor metastasis by platelet-activating factor. Cancer Res. 56:2662-2665.

    Google Scholar 

  9. BENNETT, S. A., L. C. LEITE, and H. C. BIRNBOIM. 1993. Platelet-activating factor, an endogenous mediator of inflammation, induces phenotypic transformation of rat embryo cells. Carcinogenesis 14:1289-1296.

    Google Scholar 

  10. GELBARD, H. A., H. S. NOTTET, S. SWINDELLS, M. JETT, K. A. DZENKO, P. GENIS, R. WHITE, L. WANG, Y. B. CHOI, D. ZHANG, et al. 1994. Platelet-activating factor: a candidate human immunodeficiency virus type 1 induced neurotoxin. J. Virol. 68:4628-4635.

    Google Scholar 

  11. CHOI, I. H., T. Y. HA, D. G. LEE, J. S. PARK, J. H. LEE, Y. M. PARK, and H. K. LEE. 1995. Occurrence of disseminated intravascular coagulation (DIC) in active systemic anaphylaxis: role of platelet-activating factor. Clin. Exp. Immunol. 100:390-394.

    Google Scholar 

  12. HANDLEY, D. Y., R. G. VAN VALEN, M. K. MELDEN, and R. N. SAUNDERS. 1984. Evaluation of dose and route effects of platelet-activating factor-induced extravasation in the guinea pig. Thromb. Haemostos. 52:34-36.

    Google Scholar 

  13. IM, S. Y., S. J. HAN, H. M. KO, J. H. CHOI, S. B. CHUN, D. G. LEE, T. Y. HA, and H. K. LEE. 1997. Involvement of nuclear factor-κB in platelet activating factor-mediated tumor necrosis factor-κ expression. Eur. J. Immunol. 27:2800-2804.

    Google Scholar 

  14. HAN, S. J., J. H. CHOI, H. M. KO, I. W. CHOI, H. K. LEE, O. H. LEE, and S. Y. IM. 1999. Glucocorticoids prevent NF-κB activation by inhibiting the early release of platelet-activating factor in response to lipopolysaccharide. Eur. J. Immunol. 29:1334-1341.

    Google Scholar 

  15. FANTONE, J. C., and P. A. WARD. 1982. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107:397-418.

    Google Scholar 

  16. VALONE, F. M., and E. J. GOETZL. 1983. Specific binding by human polymorphonuclear leukocytes of the immunological mediator 1-O hexadecyl octadecyl-2-acetyl-sn-glycero-3-phosphorylcholine. Immunology 48:141-149.

    Google Scholar 

  17. CHANEZ, P., G. DENT, T. YUKAWA, P. J. BARNES, and K. F. CHUNG. 1990. Generation of oxygen free radicals from blood eosinophils from asthma patients after inflammation with PAF or phorbol ester. Eur. Respir. J. 3:1002-1007.

    Google Scholar 

  18. HARTUNG, H. P., M. J. PARNHAM, J. WINKELMANN, W. ENGLBERGER, and U. HADDING. 1983. Platelet-activating factor (PAF) induces the oxidative burst in macrophages. Int. J. Immunopharmacol. 5:115-121.

    Google Scholar 

  19. KATO, M., K. TOKUYAMA, A. MORIKAWA, T. KUROUME, and P. J. BARNES. 1993. Platelet-activating factor-induced enhancement of superoxide anion generation in guinea pigs. Eur. J. Pharmacol. 232:7-12.

    Google Scholar 

  20. SEN, C. K., and L. PACKER. 1996. Antioxidant and redox regulation of gene transcription. FASEB J. 10:709-720.

    Google Scholar 

  21. KUROKI, M., E. E. VOEST, S. AMANO, L. V. BEEREPOOT, S. TAKASHIMA, M. TLOLENTINO, R. Y. KIM, R. M. ROHAN, K. A. COLBY, K. T. YEO, and A. P. ADAMIS. 1996. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest. 98:1667-1675.

    Google Scholar 

  22. GEVA, E., B. BARTOOV, N. ZABLUDOVSKY, J. B. LESSING, L. LERNER-GEVA, and A. AMIT. 1996. The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil. Steril. 66:430-434.

    Google Scholar 

  23. CAYOTA, A., F. VUILLIER, G. GONZALEZ, and G. DIGHIERO. 1996. In vitro antioxidant treatment recovers proliferative responses of anergic CD4+ lymphocytes from human immunodeficiency virus-infected individuals. Blood 87:4746-4753.

    Google Scholar 

  24. SCHAUER, U., C. LEINHAAS, R. JAGER, and C. H. RIEGER. 1991. Enhanced superoxide generation by eosinophils from asthmatics children. Int. Arch. Allergy. Appl. Immunol. 96:317-321.

    Google Scholar 

  25. PALLER, M. S., J. R. HOIDAL, and T. F. FERRIS. 1984. Oxygen free radicals in ischemic acute renal failure in the rat. J. Clin. Invest. 74:1156-1164.

    Google Scholar 

  26. CUEVA, J. P., and W. HSUEH. 1988. Role of oxygen-derived free radicals in platelet-activating factor-induced bowel necrosis. Gut 24:1207-1212.

    Google Scholar 

  27. EMANUELLI, G., G. MONTRUCCHIO, E. GAIA, L. DUGHERA, G. CORVETTI, and L. GUBETTA. 1989. Experimental acute pancreatitis induced by platelet-activating factor in rabbits. Am. J. Pathol. 134:315-326.

    Google Scholar 

  28. NOVELLI, G. P. 1997. Role of free radicals in septic shock. J. Physiol. Pharmacol. 48:517-527.

    Google Scholar 

  29. BAEUERLE, P. A., and T. HENKEL. 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141-179.

    Google Scholar 

  30. BAEUERLE, P. A., and D. BALTIMORE. 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53:211-217.

    Google Scholar 

  31. KOPP, E., and S. GHOSH. 1994. NF-κB and Rel proteins in innate immunity. Adv. Immunol. 58:1-27.

    Google Scholar 

  32. HALLIWELL, B., and J. M. GUTTERIDGE. 1989. In: Free Radicals in Biology and Medicine. Clarendon Publishers, Oxford, UK.

    Google Scholar 

  33. SCHIEVEN, G. L., J. M. KIRIHARA, D. E. MYERS, J. A. LEDBETTER, and F. M. UCKUN. 1993. Reactive oxygen intermediates activate NF-κB in a tyrosine kinase dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 82:1212-1220.

    Google Scholar 

  34. NAKAMURA, K., T. HORI, N. SATO, K. SUGIE, T. KAWAKAMI, and J. YODOI. 1993. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 8:3133-3139.

    Google Scholar 

  35. HENKEL, T., T. MACHLEIDT, I. ALKALAY, M. KRONKE, Y. BEN-NERIAH, and P. A. BAEUERLE. 1993. Rapid proteolysis of IκBα is necessary for activation of transcription factor NF-κB. Nature 365:182-185.

    Google Scholar 

  36. MACKMAN, N. 1994. Protease inhibitors block lipopolysaccharide induction of tissue factor gene expression in human monocytic cells by preventing activation of c-Rel p65 heterodimers. J. Biol. Chem. 269:26363-26367.

    Google Scholar 

  37. FLOHE, L., R. BRIGELIUS-FLOHE, C. SALIOU, M. G. TRABER, and L. PACKER. 1997. Redox regulation of NF-κB activation. Free. Radi. Biol. Med. 22:1115-1126.

    Google Scholar 

  38. MEYER, M., H. L. PAHL, and P. A. BAEUERLE. 1994. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem. Biol. Interact. 91:91-100.

    Google Scholar 

  39. HEFFETZ, D., I. BUSHKIN, R. DROR, and Y. ZICK. 1990. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265:2896-2902.

    Google Scholar 

  40. HARDWICK, J. S., and B. M. SEFTON. 1995. Activation of the Lck tyrosine protein kinase by hydrogen perioxide requires the phosphorylation of Try 394. Proc. Natl. Acad. Sci. U.S.A. 92:4527-4531.

    Google Scholar 

  41. SINGH, S., and B. B. AGGARWAL. 1995. Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B. J. Biol. Chem. 270:10631-10639.

    Google Scholar 

  42. BALDWIN, A. S. 1996. The NF-κB and IκB proteins: New discoveries and insights. Annu. Rev. Immunol. 14:649-681.

    Google Scholar 

  43. ROFF, M., I. THOMPSON, M. S. RODRIGUEZ, I. M. JACQUC, F. BALEUX, F. ARENZANA SEISDEDOS, and R. T. HAY. 1996. Role of IκBα ubiquitination in signal-induced activation of NF-κB in vivo. J. Biol. Chem. 271:7844-7850.

    Google Scholar 

  44. IMBERT, V., R. A. RUPEC, A. LIVOLSI, H. L. PAHL, B-M. TRAENCKNER, C. MUELLERDIECKMANN, D. FARAHIFAR, B. ROSSI, P. AUBERGER, P. A. BAEUERLE, and J-F. PEYRON. 1996. Tyrosine-phosphorylation of IκBα activates NF-κB without proteolytic degradation of IκBα. Cell 86:787-798.

    Google Scholar 

  45. GHOSH, S., and D. BALTIMORE. 1990. Activation of in vitro of NF-κB by phosphorylation of its inhibitor IκB. Nature 344:678-682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.H., Chung, W.J., Han, S.J. et al. Selective Involvement of Reactive Oxygen Intermediates in Platelet-activating Factor-mediated Activation of NF-κB. Inflammation 24, 385–398 (2000). https://doi.org/10.1023/A:1007068010645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007068010645

Keywords