[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA clone, Ids3 (iron deficiency-specific clone 3), was isolated from an Fe-deficient-root cDNA library of Hordeum vulgare. Ids3 encodes a protein of 339 amino acids with a calculated molecular mass of 37.7 kDa, and its amino acid sequence shows a high degree of similarity with those of plant and fungal 2-oxoglutarate-dependent dioxygenases. One aspartate and two histidine residues for ferrous Fe binding (Asp-211, His-209, His-265) and arginine and serine residues for 2-oxoglutarate binding (Arg-275, Ser-277) are conserved in the predicted amino acid sequence of Ids3. Ids3 expression was rapidly induced by Fe deficiency, and was suppressed by re-supply of Fe. Among eight graminaceous species tested, Ids3 expression was observed only in Fe-deficient roots of H. vulgare and Secale cereale, which not only secrete 2′-deoxymugineic acid (DMA), but also mugineic acid (MA) and 3-epihydroxymugineic acid (epiHMA, H. vulgare), and 3-hydroxymugineic acid (HMA, S. cereale). The Ids3 gene is encoded on the long arm of chromosome 4H of H. vulgare, which also carries the hydroxylase gene that converts DMA to MA. Moreover, the Ids2 gene, which is the plant dioxygenase with the highest homology to Ids3, is encoded on the long arm of chromosome 7H of H. vulgare, which carries the hydroxylase gene that converts MA to epiHMA. The observed expression patterns of the Ids3 and Ids2 genes strongly suggest that IDS3 is an enzyme that hydroxylates the C-2′ positions of DMA and epiHDMA, while IDS2 hydroxylates the C-3 positions of MA and DMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britsch, L., Ruhnau, B. and Forkmann, G. 1992. Molecular cloning, sequence analysis and heterologous expression of flavanone 3?-hydroxylase from Petunia hybrida. J. Biol. Chem. 267: 5380–5387.

    PubMed  Google Scholar 

  • Butt, T.R., Sternberg, E.J., Gorman, J.A., Clark, P., Hamer, D., Rosenberg, M. and Crooke, S.T. 1984. Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc. Natl. Acad. Sci. USA 81: 3332–3336.

    PubMed  Google Scholar 

  • Church, G. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    PubMed  Google Scholar 

  • De Carolis, E. and De Luca, V. 1994. 2-oxoglutarate-dependent dioxygenase and related enzymes: biochemical characterization. Phytochemistry 36: 1093–1107.

    Article  PubMed  Google Scholar 

  • Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998–9002.

    PubMed  Google Scholar 

  • Hashimoto, T. and Yamada, Y. 1987. Purification and characterization of hyoscyamine 6?-hydroxylase from root cultures of Hyoscyamus niger L. Eur. J. Biochem. 164: 277–285.

    PubMed  Google Scholar 

  • Hashimoto, T., Hayashi, A., Amano, Y., Kohno, J., Iwanari, H., Usuda, S. and Yamada, Y. 1991. Hyoscyamine 6?-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J. Biol. Chem. 266: 4648–4653.

    PubMed  Google Scholar 

  • Higuchi, K., Kanazawa, K., Nishizawa, N.K., Chino, M. and Mori, S. 1994. Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. Plant Soil 165: 173–179.

    Google Scholar 

  • Higuchi, K., Kanazawa, K., Nishizawa, N.-K. and Mori, S. 1996. The role of nicotianamine synthase in response to Fe nutrition status in Gramineae. Plant Soil 178: 171–177.

    Google Scholar 

  • Higuchi, K., Nakanishi, H., Suzuki, K., Nishizawa, N. K. and Mori, S. 1999a. Presence of nicotianamine synthase isozymes and their homologues in the root of graminaceous plants. Soil Sci. Plant Nutr. 45: 681–691.

    Google Scholar 

  • Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K. and Mori, S. 1999b. Cloning of nicotianamine synthase genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 119: 471–480.

    PubMed  Google Scholar 

  • Imbert, J., Culotta, V., Furst, P., Gedamu, L. and Hamer, D. 1990. Regulation of metallothionein gene transcription by metals. In: G.L. Eichhorn and L.G. Marzilli (Eds.) Metal-Ion Induced Regulation of Gene Expression, Elsevier, Amsterdam, pp. 159–164.

    Google Scholar 

  • Islam, A., Shepherd, K. and Sparrow, D. 1981. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46: 161–174.

    Google Scholar 

  • Itai, R., Suzuki, K., Yamaguchi, H., Nakanishi, H., Nishizawa, N. K. and Mori, S. 2000. Induced activity of adnenine phosphoribosyltransferase (APRT) in iron-deficient barley roots. A possible role of adenine salvage in the methionine cycle in phytosiderophore production. J. Exp. Bot. 51: 1179–1188.

    PubMed  Google Scholar 

  • Kanazawa, K., Higuchi, K., Nishizawa, N.K., Fushiya, S., Chino, M. and Mori, S. 1994. Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions in Gramineae. J. Exp. Bot. 45: 1903–1906.

    Google Scholar 

  • Kanazawa, K., Higuchi, K., Nakanishi, H., Nishizawa, N.K. and Mori, S. 1998. Characterizing nicotianamine aminotransferase: improving its assay system and details of the regulation of its activity by Fe nutrition status. Soil Sci. Plant Nutr. 44: 717–721.

    Google Scholar 

  • Kanegae, T., Kajiya, H., Amano, Y., Hashimoto, T. and Yamada, Y. 1994. Species-dependent expression of the hyoscyamine 6?-hydroxylase gene in the pericycle. Plant Physiol. 105: 483–490.

    PubMed  Google Scholar 

  • Logmann, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissue. Anal. Biochem. 163: 16–20.

    PubMed  Google Scholar 

  • Lukacin, R. and Britsch, L. 1987. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3?-hydroxylase. Eur. J. Biochem. 249: 748–757.

    Google Scholar 

  • Ma, J., Shinada, T., Matsuda, C. and Nomoto, K. 1995. Biosynthesis of phytosiderophores, mugineic acids associated with methionine cycling. J. Biol. Chem. 270: 16549–16554.

    PubMed  Google Scholar 

  • Ma, J.F., Taketa, S., Chang, Y.-C., Iwashita, T., Matsumoto, H., Takeda, K. and Nomoto, K. 1999. Genes controlling hydroxylation of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta 207: 590–596.

    Google Scholar 

  • Marschner, H., Römheld, V. and Kissel, M. 1986. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9: 695–713.

    Google Scholar 

  • Matsuda, J., Okabe, S., Hashimoto, T. and Yamada, Y. 1991. Molecular cloning of hyoscyamine 6?-hydroxylase, a 2-oxoglutaratedependent dioxygenase, from cultured roots of Hyoscyamus niger. J. Biol. Chem. 266: 9460–9464.

    PubMed  Google Scholar 

  • Mihashi, S. and Mori, S. 1989. Characterization of mugineic acid-Fe transporter in Fe-deficient barley roots using the multicompartment transporter box method. Biol. Metals 2: 146–154.

    Google Scholar 

  • Milligan, S.B. and Gasser, C.S. 1995. Nature and regulation of pistil-expressed genes in tomato. Plant Mol. Biol. 28: 691–711.

    PubMed  Google Scholar 

  • Mori, S. and Nishizawa, N. 1987. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol. 28: 1081–1092.

    Google Scholar 

  • Mori, S. and Nishizawa, N. 1989. Identification of barley chromosome no. 4, possible encoder of genes for mugineic acid synthesis from 2'-deoxymugineic acid using wheat-barley addition lines. Plant Cell Physiol. 30: 1057–1061.

    Google Scholar 

  • Mori, S., Nishizawa, N. and Fujigaki, J. 1990. Identification of rye chromosome 5R as a carrier of the genes for mugineic acid synthetase using wheat-rye addition lines. Jpn. J. Genet. 65: 343–352.

    Google Scholar 

  • Nakanishi, H., Okumura, N., Umehara, Y., Nishizawa, N.K., Chino, M. and Mori, S. 1993. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol. 34: 401–410.

    PubMed  Google Scholar 

  • Nakanishi, H., Bughio, N., Matsuhashi, S., Ishioka, N., Uchida, H., Tsuji, A., Osa, A., Sekine, T., Kume, T. and Mori, S. 1999. Visualising real time [11C]methionine translocation in Fe-sufficient and Fe-deficient barley using a Positron Emitting Tracer Imaging System (PETIS). J. Exp. Bot. 50: 637–643.

    Google Scholar 

  • Nomoto, K., Sugiura, Y. and Takagi, S. 1987. Mugineic acids: studies on phytosiderophores. In: G. Winkelmann, D. van der Helm and J.B. Neilands (Eds.) Iron Transport in Microbes, Plants and Animals, VCH Publishers, Weinheim, Germany, pp. 401–425.

    Google Scholar 

  • Okumura, N., Nishizawa, N.K., Umehara, Y. and Mori, S. 1991. An iron deficiency-specific cDNA from barley roots having two homologous cystein-rich MT domains. Plant Mol. Biol. 17: 531–533.

    PubMed  Google Scholar 

  • Okumura, N., Nishizawa, N.K., Umehara, Y., Ohata, T. and Mori, S. 1992. Iron deficiency specific cDNA (Ids1) with two homologous cystein rich domains from the roots of barley. J. Plant Nutr. 15: 2157–2172.

    Google Scholar 

  • Okumura, N., Nishizawa, N.K., Umehara, Y., Ohata, T., Nakanishi, H., Yamaguchi, H., Chino, M. and Mori, S. 1994. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol. Biol. 25: 705–719.

    PubMed  Google Scholar 

  • Prescott, A.G. 1993. A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44: 849–861.

    Google Scholar 

  • Römheld, V. 1987. Different strategies for iron acquisition in higher plants. Plant Physiol. 70: 231–234.

    Google Scholar 

  • Shojima, S., Nishizawa, N.K., Fushiya, S., Nozoe, S., Irifune, T. and Mori, S. 1990. Biosynthesis of phytosiderophores. In vitro biosynthesis of 2'-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol. 93: 1497–1503.

    Google Scholar 

  • Suzuki, K., Higuchi, K., Nakanishi, H., Nishizawa, N.K. and Mori, S. 1999. Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci. Plant Nutr. 45: 993–1002.

    Google Scholar 

  • Suzuki, K., Hirano, H., Yamaguchi, H., Irifune, T., Nishizawa, N.K., Chino, M. and Mori, S. 1995. Partial amino acid sequences of a peptide induced by Fe deficiency in barley roots. In: J. Abadía (Ed.) Iron Nutrition in Soils and Plants, Kluwer Acadmic Publishers, Dordrecht, Netherlands, pp. 363–369.

    Google Scholar 

  • Suzuki, K., Itai, R., Suzuki, K., Nakanishi, H., Nishizawa, N.K., Yoshimura, E. and Mori, S. 1998. Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol. 116: 725–732.

    PubMed  Google Scholar 

  • Takagi, S. 1976. Naturally occurring iron-chelating compounds in oat-and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 22: 423–433.

    Google Scholar 

  • Takagi, S., Nomoto, K. and Takemoto, S. 1984. Physiological aspects of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7: 469–477.

    Google Scholar 

  • Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiri, T., Nishizawa, N.K. and Mori, S. 1999. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 121: 947–956.

    PubMed  Google Scholar 

  • Takizawa, R., Nishizawa, N.-K., Nakanishi, H. and Mori, S. 1996. Effect of iron deficiency on S-adenosyl-methionine synthetase in barley roots. J. Plant Nutr. 19: 1189–1200.

    Google Scholar 

  • Tan, D.S.H. and Sim, T.-S. 1996. Functional analysis of conserved histidine residues in Cephalosporium acremonium isopenicillin N synthase by site-directed mutagenesis. J. Biol. Chem. 271: 889–894.

    PubMed  Google Scholar 

  • Valegård, K., van Scheltinga, A.C.T., Lloyd, M.D., Hara, T., Ramaswamy, S., Perrakis, A., Thompson, A., Lee, H.J., Baldwin, J.E., Schofield, C.J., Hajdu, J. and Andersson, I. 1998. Structure of a cephalosporin synthase. Nature 394: 805–809.

    PubMed  Google Scholar 

  • Yamaguchi, H., Nakanishi, H. and Mori, S. 2000. Induction of the IDI1 gene in Fe-deficient barley roots: a gene encoding a putative enzyme that catalyses the methionine salvage pathway for phytosiderophore production. Soil Sci. Plant Nutr. 46: 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, H., Yamaguchi, H., Sasakuma, T. et al. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44, 199–207 (2000). https://doi.org/10.1023/A:1006491521586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006491521586

Navigation