[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Negationless intuitionism

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The present paper deals with natural intuitionistic semantics for intuitionistic logic within an intuitionistic metamathematics. We show how strong completeness of full first order logic fails. We then consider a negationless semantics à la Henkin for second order intuitionistic logic. By using the theory of lawless sequences we prove that, for such semantics, strong completeness is restorable. We argue that lawless negationless semantics is a suitable framework for a constructive structuralist interpretation of any second order formalizable theory (classical or intuitionistic, contradictory or not).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dummett, M. (1977): Elements of Intuitionism. Oxford.

  2. Franchella, M. (1992): The Griss- Brouwer Debate on Negation, CUEM preprint, Univ. di Milano.

  3. Griss, G. F. C. (1946): Negationless Intuitionistic Mathematics, Indag. Math. 8: 675- 681.

    Google Scholar 

  4. Heyting, A. (1976): Intuitionism: an Introduction, North-Holland, Amsterdam.

    Google Scholar 

  5. Leblanc, H. (1975): That Principia Mathematica, first edition, has a predicative interpretation after all, Journal of Philosophical Logic 4: 67- 70.

    Google Scholar 

  6. McCarty, D. C. (1991): Incompleteness in intuitionistic metamathematics, Notre Dame J. of Formal Logic 32(3): 323- 358.

    Google Scholar 

  7. Martino, E. (1988): An intuitionistic notion of hypothetical truth for which strong completeness intuitionistically holds, Teoria viii(2): 131- 144.

    Google Scholar 

  8. Russell, B. (1906): The Theory of Implication, American Journal of Mathematics 28: 159- 202.

    Google Scholar 

  9. De Swart, H. (1976): Another intuitionistic completeness proof, Journal of Symbolic Logic 41: 644- 662.

    Google Scholar 

  10. Troelstra, A. S. and van Dalen, D. (1988): Constructivism in Mathematics, vol. I, vol. II, North-Holland.

  11. Veldman, W. (1976): An intuitionistic completeness theorem for intuitionistic predicate logic, Journal of Symbolic Logic 41: 159- 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martino, E. Negationless intuitionism. Journal of Philosophical Logic 27, 165–177 (1998). https://doi.org/10.1023/A:1004278211254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004278211254

Keywords

Navigation