Abstract
This paper investigates (modal) extensions of Heyting–Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gödel-embedding of intuitionistic logic into S4 , it is shown that all (modal) extensions of Heyting–Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok–Esakia-Theorem is proved for this embedding.
Similar content being viewed by others
REFERENCES
Balbes, R. and Dwinger, Ph., Distributive Lattices, University of Missouri Press, 1974.
van Benthem, J., The Logic of Time, Reidel, Dordrecht, 1983.
van Benthem, J., Temporal logic. In: Gabbay, Hogger, and Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 4, 1995, pp. 241–350.
Blok, W., Varieties of Interior Algebras, Dissertation, University of Amsterdam, 1976.
Blok, W. and Köhler, P., Algebraic semantics for quasi-classical modal logics, Journal of Symbolic Logic 48 (1983), 941–964.
Basic tense logic. In: D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. 2, 1984, pp. 89–133.
Bosic, M. and Došen, K., Models for normal intuitionistic modal logics, Studia Logica 43 (1984), 217–245.
Chagrov, A. V. and Zakharyaschev, M. V., Modal companions of intermediate propositional logics, Studia Logica 51 (1992), 49–82.
Chagrov, A. V. and Zakharyaschev, M. V., Modal and superintuitionistic logics, Oxford University Press, 1996. LOGISEG6.tex; 19/03/1998; 13:42; v.7; p.33
Dummett, M. and Lemmon, E., Modal logics between S4 and S5, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 5 (1959), 250–264.
Esakia, L., On Varieties of Grzegorczyk Algebras, in Studies in Nonclassical Logics and Set Theory, Moscow, Nauka, 1979, pp. 257–287.
Fine, K., Logics containing K4, Part I, Journal of Symbolic Logic 39 (1974), 229–237.
Fine, K., Logics containing K4, Part II, Journal of Symbolic Logic 50 (1985), 619–651.
Fine, K. and Schurz, G., Transfer theorems for stratified modal logics, in Proceedings of the Arthur Prior Memorial Conference, Christchurch, New Zealand, 1991.
Fischer Servi, G., Semantics for a class of intuitionistic modal calculi. In: M. L. Dalla Chiara (ed.), Italian Studies in the Philosophy of Science, Reidel, Dordrecht, 1980, pp. 59–72.
Fischer Servi, G., Axiomatizations for some Intuitionistic Modal Logics, Rend. Sem. Mat. Univers. Polit. 42 (1984), 179–194.
Font, J., Modality and possibility in some intuitionistic modal logics, Notre Dame Journal of Formal Logic 27 (1986), 533–546.
Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines mathematischen Kolloquiums 6 (1933), 39–40.
Goldblatt, R., Metamathematics of Modal Logic, Reports on Mathematical Logic 6 (1976), 41–78, 7 (1976), 21–52.
Goldblatt, R., Logics of Time and Computation, Number 7 in CSLI Lecture Notes, CSLI, 1987.
Grzegorczyk, A., A philosophically plausible formal interpretation of intuitionistic logic, Indag. Math. 26, 596–601.
Köhler, R., A subdirectly irreducible double Heyting algebra which is not simple, Algebra Universalis 10 (1980), 189–194.
Kracht, M., Even more on the lattice of tense logics, Arch. Math. Logic 31 (1992), 243–257.
Kracht, M. and Wolter, F., Properties of independently axiomatizable bimodal logics, Journal of Symbolic Logic 56 (1991), 1469–1485.
Kripke, S., A semantical analysis of intuitionistic logic I. In: J. Crossley and M. Dummett (eds), Formal Systems and Recursive Functions, North-Holland, Amsterdam, 1965, pp. 92–129.
Makkai, M. and Reyes, G., Completeness results for intuitionistic and modal logics in a categorical setting, Annals of Pure ans Applied Logic 72 (1995), 25–101.
Maksimova, L. and Rybakov, V., Lattices of modal logics, Algebra and Logic 13 (1974), 105–122.
Ono, H., On some intuitionistic modal logics, Publ. Kyoto University 13 (1977), 687–722.
Rauszer, C., Semi-Boolean algebras and their applications to intuitionistic logic with dual operators, Fund. Math. 83 (1974), 219–249.
Rauszer, C., A formalization of propositional calculus of H-B logic, Studia Logica 33 (1974).
Rauszer, C., An algebraic and Kripke-style approach to a certain extension of intuitionistic logic, Dissertationes Mathematicae, vol. CLXVII, Warszawa, 1980.
Rautenberg, W., Klassische und Nichtklassische Aussagenlogik, Wiesbaden, 1979.
Segerberg, K., An Essay in Classical Modal Logic, Uppsala, 1971.
Segerberg, K., That every extension of S4.3 is normal. In: S. Kanger (ed.), Proceedings of the Third Scandinavian Logic Symposium, Amsterdam, 1976, pp. 194–196.
Thomason, S. K., Semantic analysis of tense logics, Journal of Symbolic Logic 37 (1972), 150–158.
Troelstra, A. and van Dalen, D., Constructivism in Mathematics, vol. I, North-Holland, Amsterdam, 1988.
Wojcicki, R., Theory of Logical Calculi, Dordrecht, 1988.
Wolter, F., The finite model property in tense logic, Journal of Symbolic Logic 60 (1995), 757–774.
Wolter, F., Superintuitionistic companions of classical modal logics, Studia Logica 58 (1997), 229–259.
Wolter, F., Completeness and decidability of tense logics closely related to logics containing K4, Journal of Symbolic Logic 62 (1997), 131–158.
Wolter, F. and Zakharyaschev, M., Intuitionistic modal logics as fragments of classical bimodal logics, in logic at work, Essays in honour of H. Rasiowa, forthcoming.
Wolter, F. and Zakharyaschev, M., On the relation between intuitionistic and classical modal logics, to appear in Algebra and Logic, 1996.
Zakharyaschev, M., Canonical Formulas for K4, Part II, to appear in Journal of Symbolic Logic, 1996.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wolter, F. On Logics with Coimplication. Journal of Philosophical Logic 27, 353–387 (1998). https://doi.org/10.1023/A:1004218110879
Issue Date:
DOI: https://doi.org/10.1023/A:1004218110879