[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Logics with Coimplication

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper investigates (modal) extensions of Heyting–Brouwer logic, i.e., the logic which results when the dual of implication (alias coimplication) is added to the language of intuitionistic logic. We first develop matrix as well as Kripke style semantics for those logics. Then, by extending the Gödel-embedding of intuitionistic logic into S4 , it is shown that all (modal) extensions of Heyting–Brouwer logic can be embedded into tense logics (with additional modal operators). An extension of the Blok–Esakia-Theorem is proved for this embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Balbes, R. and Dwinger, Ph., Distributive Lattices, University of Missouri Press, 1974.

  2. van Benthem, J., The Logic of Time, Reidel, Dordrecht, 1983.

    Google Scholar 

  3. van Benthem, J., Temporal logic. In: Gabbay, Hogger, and Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 4, 1995, pp. 241–350.

  4. Blok, W., Varieties of Interior Algebras, Dissertation, University of Amsterdam, 1976.

  5. Blok, W. and Köhler, P., Algebraic semantics for quasi-classical modal logics, Journal of Symbolic Logic 48 (1983), 941–964.

    Google Scholar 

  6. Basic tense logic. In: D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. 2, 1984, pp. 89–133.

  7. Bosic, M. and Došen, K., Models for normal intuitionistic modal logics, Studia Logica 43 (1984), 217–245.

    Google Scholar 

  8. Chagrov, A. V. and Zakharyaschev, M. V., Modal companions of intermediate propositional logics, Studia Logica 51 (1992), 49–82.

    Google Scholar 

  9. Chagrov, A. V. and Zakharyaschev, M. V., Modal and superintuitionistic logics, Oxford University Press, 1996. LOGISEG6.tex; 19/03/1998; 13:42; v.7; p.33

  10. Dummett, M. and Lemmon, E., Modal logics between S4 and S5, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 5 (1959), 250–264.

    Google Scholar 

  11. Esakia, L., On Varieties of Grzegorczyk Algebras, in Studies in Nonclassical Logics and Set Theory, Moscow, Nauka, 1979, pp. 257–287.

    Google Scholar 

  12. Fine, K., Logics containing K4, Part I, Journal of Symbolic Logic 39 (1974), 229–237.

    Google Scholar 

  13. Fine, K., Logics containing K4, Part II, Journal of Symbolic Logic 50 (1985), 619–651.

    Google Scholar 

  14. Fine, K. and Schurz, G., Transfer theorems for stratified modal logics, in Proceedings of the Arthur Prior Memorial Conference, Christchurch, New Zealand, 1991.

  15. Fischer Servi, G., Semantics for a class of intuitionistic modal calculi. In: M. L. Dalla Chiara (ed.), Italian Studies in the Philosophy of Science, Reidel, Dordrecht, 1980, pp. 59–72.

    Google Scholar 

  16. Fischer Servi, G., Axiomatizations for some Intuitionistic Modal Logics, Rend. Sem. Mat. Univers. Polit. 42 (1984), 179–194.

    Google Scholar 

  17. Font, J., Modality and possibility in some intuitionistic modal logics, Notre Dame Journal of Formal Logic 27 (1986), 533–546.

    Google Scholar 

  18. Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines mathematischen Kolloquiums 6 (1933), 39–40.

    Google Scholar 

  19. Goldblatt, R., Metamathematics of Modal Logic, Reports on Mathematical Logic 6 (1976), 41–78, 7 (1976), 21–52.

    Google Scholar 

  20. Goldblatt, R., Logics of Time and Computation, Number 7 in CSLI Lecture Notes, CSLI, 1987.

  21. Grzegorczyk, A., A philosophically plausible formal interpretation of intuitionistic logic, Indag. Math. 26, 596–601.

  22. Köhler, R., A subdirectly irreducible double Heyting algebra which is not simple, Algebra Universalis 10 (1980), 189–194.

    Google Scholar 

  23. Kracht, M., Even more on the lattice of tense logics, Arch. Math. Logic 31 (1992), 243–257.

    Google Scholar 

  24. Kracht, M. and Wolter, F., Properties of independently axiomatizable bimodal logics, Journal of Symbolic Logic 56 (1991), 1469–1485.

    Google Scholar 

  25. Kripke, S., A semantical analysis of intuitionistic logic I. In: J. Crossley and M. Dummett (eds), Formal Systems and Recursive Functions, North-Holland, Amsterdam, 1965, pp. 92–129.

    Google Scholar 

  26. Makkai, M. and Reyes, G., Completeness results for intuitionistic and modal logics in a categorical setting, Annals of Pure ans Applied Logic 72 (1995), 25–101.

    Google Scholar 

  27. Maksimova, L. and Rybakov, V., Lattices of modal logics, Algebra and Logic 13 (1974), 105–122.

    Google Scholar 

  28. Ono, H., On some intuitionistic modal logics, Publ. Kyoto University 13 (1977), 687–722.

    Google Scholar 

  29. Rauszer, C., Semi-Boolean algebras and their applications to intuitionistic logic with dual operators, Fund. Math. 83 (1974), 219–249.

    Google Scholar 

  30. Rauszer, C., A formalization of propositional calculus of H-B logic, Studia Logica 33 (1974).

  31. Rauszer, C., An algebraic and Kripke-style approach to a certain extension of intuitionistic logic, Dissertationes Mathematicae, vol. CLXVII, Warszawa, 1980.

  32. Rautenberg, W., Klassische und Nichtklassische Aussagenlogik, Wiesbaden, 1979.

  33. Segerberg, K., An Essay in Classical Modal Logic, Uppsala, 1971.

  34. Segerberg, K., That every extension of S4.3 is normal. In: S. Kanger (ed.), Proceedings of the Third Scandinavian Logic Symposium, Amsterdam, 1976, pp. 194–196.

  35. Thomason, S. K., Semantic analysis of tense logics, Journal of Symbolic Logic 37 (1972), 150–158.

    Google Scholar 

  36. Troelstra, A. and van Dalen, D., Constructivism in Mathematics, vol. I, North-Holland, Amsterdam, 1988.

    Google Scholar 

  37. Wojcicki, R., Theory of Logical Calculi, Dordrecht, 1988.

  38. Wolter, F., The finite model property in tense logic, Journal of Symbolic Logic 60 (1995), 757–774.

    Google Scholar 

  39. Wolter, F., Superintuitionistic companions of classical modal logics, Studia Logica 58 (1997), 229–259.

    Google Scholar 

  40. Wolter, F., Completeness and decidability of tense logics closely related to logics containing K4, Journal of Symbolic Logic 62 (1997), 131–158.

    Google Scholar 

  41. Wolter, F. and Zakharyaschev, M., Intuitionistic modal logics as fragments of classical bimodal logics, in logic at work, Essays in honour of H. Rasiowa, forthcoming.

  42. Wolter, F. and Zakharyaschev, M., On the relation between intuitionistic and classical modal logics, to appear in Algebra and Logic, 1996.

  43. Zakharyaschev, M., Canonical Formulas for K4, Part II, to appear in Journal of Symbolic Logic, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolter, F. On Logics with Coimplication. Journal of Philosophical Logic 27, 353–387 (1998). https://doi.org/10.1023/A:1004218110879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004218110879

Keywords

Navigation