[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Science-Based Dating Methods in Historic Preservation

  • Published:
Archives and Museum Informatics

Abstract

The use of science-based dating methods in historic preservation contexts represents a specialized use of dating method technologies more broadly employed in prehistoric archaeological studies. This discussion focuses attention on the applications of the radiocarbon, dendrochronology, obsidian hydration, and archaeomagnetic dating in historic preservation. The employment of various analytical and technical approaches — of which chronometric resolution is only one aspect — in elucidating and extending descriptive observations is advancing more broadly-based and insightful understandings of the elements of the cultural patrimony of our nation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, M.J., Science-based Dating in Archaeology (London: Longman, 1989).

    Google Scholar 

  • Bannister, B., “Dendrochronology”, in D. Brothwell and E. Higgs (eds.), Science in Archaeology, 2nd edition (London: Thames and Hudson, 1969), pp. 191-205.

    Google Scholar 

  • Beer, J. and others, “The contribution of the Swiss lake-dwellings to the calibration of radiocarbon dates”, in R. Berger and H.E. Suess (eds.), Radiocarbon Dating (Los Angeles: University of California Press, 1979), pp. 566-590.

    Google Scholar 

  • Damon, P.E. and others, “Radiocarbon dating of the Shroud of Turin”, Nature 337 (1989), 611-615.

    Google Scholar 

  • Dean, J.S., “Dendrochronology”, in R.E. Taylor and M.J. Aitken (eds.), Chronometric Dating in Archaeology (New York: Plenum Press, 1997), pp. 31-64.

    Google Scholar 

  • Eighmy, J.L. and R.S. Sternberg, Archaeomagnetic Dating (Tucson: The University of Arizona Press, 1990).

    Google Scholar 

  • Ferguson, C.W. and others, “Determination of the age of Swiss lake dwellings as an example of dendrochronologically-calibrated radiocarbon dating”, Zeitschrift fur Naturforschung 21A (1966), pp. 1173-1177.

    Google Scholar 

  • Friedman, I., F.W. Trembour and R.E. Hughes, “Obsidian hydration dating”, in R.E. Taylor and M.J. Aitken (eds.), Chronometric Dating in Archaeology (New York: Plenum Press, 1997), pp. 297-322.

    Google Scholar 

  • Göksu, H.Y., M. Oberhofer and D. Regulla, Scientific Dating Methods (Dordrecht: Gluwer Academic Publishers, 1991).

    Google Scholar 

  • deJong, A.F.M. and W.G. Mook, “Medium-term atmospheric 14C variations”, Radiocarbon 22 (1980), pp. 267-272.

    Google Scholar 

  • Klein, J., J.C. Lerman, P.E. Damon and E.K. Ralph, “Calibration of radiocarbon dates: Tables based on the consensus data of the workshop on calibrating the radiocarbon time scale”, Radiocarbon 24 (1982), 103-150.

    Google Scholar 

  • Kojo, Y., R.M. Kalin and A. Long, “High-precision 'wiggle-matching' in radiocarbon dating”, Journal of Archaeological Science, (1994, in press).

  • Kruse, H.H. and others, “Computer-matched radiocarbon dates of floating tree-ring series”, Radiocarbon 22 (1980), pp. 260-266.

    Google Scholar 

  • Linick, T.W., P.E. Damon, D.J. Donahue and A.J.T. Jull, “Accelerator mass spectrometry: the new revolution in radiocarbon dating”, Quaternary International 1 (1989), pp. 1-6.

    Google Scholar 

  • Michels, J.W., “Obsidian hydration dating”, Endeavour 10 (1986), pp. 97-100.

    Google Scholar 

  • Pearson, G.W. and others, “Precise calendrical dating of known growth-period samples using a 'curve fitting' technique”, Radiocarbon 28 (1986), 292-299.

    Google Scholar 

  • Snethkamp, P.E., R.E. Taylor, R. Maddin, L.A. Payen and P.J. Slota Jr., “The origin of the Goleta Cannons: Inferences of age based on various lines of evidence”, Historical Archaeology 24 (1990), 82-91.

    Google Scholar 

  • Southon, J.R. and others, “Progress in AMS measurements at the LLNL spectrometer”, Radiocarbon 34 (1992), 473-477.

    Google Scholar 

  • Sternberg, R., “The geophysical basis of archaeomagnetic dating”, in J.L. Eighmy and R.S. Sternberg (eds.), Archaeomagnetic Dating (Tuscon: University of Arizona Press, 1990), pp. 5-28.

    Google Scholar 

  • Sternberg, R.S., “Archaeomagnetic dating”, in R.E. Taylor and M.J. Aitken (eds.), Chronometric Dating in Archaeology (New York: Plenum Press, 1997), pp. 323-356.

    Google Scholar 

  • Stevenson, C.M., J. Carpenter and B.E. Scheetz, “Obsidian dating: recent advances in the experimental determination and application of hydration rates”, Archaeometry 31 (1989), pp. 193-206.

    Google Scholar 

  • Stuiver, M. and R. Kra, “Calibration issue”, Radiocarbon 28 (1986), pp. 805-1030.

    Google Scholar 

  • Stuiver, M., “A high-precision calibration of the AD radiocarbon time scale”, Radiocarbon 24 (1982), pp. 1-26.

    Google Scholar 

  • Stuiver, M. (ed.), “Calibration 1993”, Radiocarbon 35 (1993), pp. 1-244.

  • Suess, H. and C. Strahm, “The neolithic of Auveneir, Switzerland”, Antiquity 44 (1970), pp. 91-99.

    Google Scholar 

  • Taylor, R.E., Radiocarbon Dating An Archaeological Perspective (Orlando: Academic Press, 1987).

    Google Scholar 

  • Taylor, R.E., “Radioisotope dating by accelerator mass spectrometry: archaeological and paleo-anthropological perspectives”, in H.Y. Göksu, M. Oberhofer and D. Regulla (eds.), Scientific Dating Methods (Dordrecht: Gluwer Academic Publishers, 1991), pp. 37-54.

    Google Scholar 

  • Taylor, R.E., “Radiocarbon dating”, in R.E. Taylor and M.J. Aitken (eds.), Chronometric Dating in Archaeology (New York: Plenum Press, 1997), pp. 65-96.

    Google Scholar 

  • Taylor, R.E., A. Long and R.S. Kra (eds.), Radiocarbon After Four Decades An Interdisciplinary Perspective (New York: Springer Verlag, 1992).

    Google Scholar 

  • Taylor, R.E., L.A. Payen and P.J. Slota Jr., “The age of the Calaveras Skull: Dating the 'Piltdown Man' of the New World”, American Antiquity 57 (1992), pp. 269-275.

    Google Scholar 

  • Taylor, R.E., J.M. Suchey, L.A. Payen, and P.J. Slota Jr., “The use of radiocarbon (14C) to identify human skeletal materials of forensic science interest”, Journal of Foresnsic Sciences 34 (1989), pp. 1196-1205.

    Google Scholar 

  • Taylor, R.E., M. Stuiver and P.J. Reimer, “Development and extension of the calibration of the radiocarbon time scale: Archaeological applications”, Quaternary Sciuence Reviews (Quaternary Geochronology) 15 (1996), 655-668.

    Google Scholar 

  • U.S. Congress, Office of Technology Assessment, Technologies for Prehistoric and Historic Preservation, OTA-E-319 (Washington, D.C.: U.S. Government Printing Office, 1986).

    Google Scholar 

  • Wolfli, W., “Advances in accelerator mass spectrometry”, in N.E. Gove, A.E. Litehrland and D. Elmore (ed.), Accelerator Mass Spectrometry (Amsterdam: North-Holland Physics Publishing, 1987), pp. 1-13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R.E. Science-Based Dating Methods in Historic Preservation. Archives and Museum Informatics 13, 227–247 (1999). https://doi.org/10.1023/A:1012419025537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012419025537

Keywords

Navigation