Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T21:28:32.383Z Has data issue: false hasContentIssue false

Renal and salivary clearance of purine derivatives in sheep

Published online by Cambridge University Press:  02 September 2010

J. C. Surra
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
J. A. Guada
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
J. Balcells
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
C. Castrillo
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
Get access

Abstract

Four adult ewes (mean weight 42·6 kg) fitted with oesophageal fistulae were given 5 mmol/day ofallantoin or saline solutions by intrajugular continuous infusion. The experiment was a randomized cross-over design, with two consecutive 3-day infusion periods. One kg/day fresh matter of either chopped or pelleted fescue hay was distributed over 12 meals and salivary flow estimated from dilution of Co-EDTA infused into the buccal cavity. Allantoin infusion resulted in a rapid increase in its plasma concentration (84 to 128 (s.e. 1·5) μmol/l) and urinary excretion (9·6 to 13·3 (s.e. 0·18) mmol/day) without significant differences between diets. Salivary allantoin also increased (4·6 to 6·4 (s.e. 0·60) ymol/1) in response to infusion, although the concentration of total purine derivatives in saliva was only proportionately 0·08 that of plasma. Renal and salivary clearance of oxypurines, allantoin (78 (s.e. 5·0) ml/min and 13 (s.e. 0·7) ml/h), uric acid (466 (s.e. 98·0) ml/min and 45 (s.e. 9·8) ml/h) and creatinine (104 (s.e. 3·0) ml/min and 14 (s.e. 1·1) ml/h) were constant, irrespective of diet and infusion treatments. Urinary recovery of infused allantoin averaged 0·78 (s.e. 0·031) but salivary secretion, equivalent to about 0·003 of urinary losses, was not the explanation for the incomplete recovery.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists. 1980. Official methods of analysis of the Association of Official Analytical Chemists. 13th edition. Washington, DC.Google Scholar
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1991. Urinary excretion of allantoin precursors by sheep after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116:309317.Google Scholar
Balcells, J., Guada, J. A., Peiro, J. M. and Parker, D. S. 1992. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography 575:153157.CrossRefGoogle ScholarPubMed
Bikhardt, K. and Duengelhoef, R. 1994. Clinical examination of renal function in sheep. I. Methods and reference values of healthy animals. Deutsche Tierärztliche Wochenschrift 101:463466.Google Scholar
Bishara, H. N. and Bray, A. C. 1978. The validity of endogenous creatinine clearance in measuring the glomerular filtration rate in the ovine kidney. Ajebak 56: 119121.Google ScholarPubMed
Carter, R. R., Allen, O. B. and Grovum, W. L. 1990. The effect of feeding frequency and meal size on amount of total and parotid saliva secreted by sheep. British Journal of Nutrition 63: 305318.CrossRefGoogle ScholarPubMed
Chen, X. B., Hovell, F. D. DeB. and Ørskov, E. R. 1990a. Excretion of purine derivatives by ruminants: recycling of allantoin into the rumen via saliva and its fate in the gut. British Journal of Nutrition 63:197205.Google Scholar
Chen, X. B., Hovell, F. D. DeB., Ørskov, E. R. and Brown, D. S. 1990b. Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63: 131142.CrossRefGoogle ScholarPubMed
Chen, X. B., Kyle, D. J., Ørskov, E. R. and Hovell, F. D. DeB. 1991. Renal clearance of plasma allantoin in sheep. Experimental Physiology 76: 5965.Google Scholar
Faichney, G. J. and Welch, R. J. 1994. Renal excretion of allantoin and creatinine by Merino sheep selected for higher clean fleece weight. Proceedings of the Society of Nutrition Physiology, vol. 3 (ed. Giesecke, D.), pp. 113. D.L.G.-Verlag, Frankfurt.Google Scholar
Giesecke, D., Balsliemke, J., Südekum, K. H. and Stangassinger, M. 1993. Plasma level, clearance and renal excretion of endogenous and ruminal purines in the bovine. Journal of Animal Physiology and Animal Nutrition 70:180189.CrossRefGoogle Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural handbook no. 379. Agricultural Research Service, USDA, Washington, DC.Google Scholar
Gonzalez, J. S. and Grovum, W. L. 1993. Secretion from the parotid and mandibular glands in sheep during eating, resting and ruminating. Journal of Animal Science 71: (suppl. 1) 708 (abstr.).Google Scholar
Greger, R., Lang, F. and Deetjen, P. 1976. Renal excretion of purine metabolites, urate and allantoin, by the mammalian kidney. In International review of physiology. Kidney and urinary tract physiology II, volume 11 (ed. Thurau, K.), pp. 257281. University Park Press, Baltimore.Google Scholar
Grootveld, M. and Hallivell, B. 1987. Measurement of allantoin and uric acid in human body fluids. Biochemical Journal 243: 803808.CrossRefGoogle ScholarPubMed
Guyton, A. C. 1986. Textbook of medical physiology. W. B. Saunders Company, Philadelphia.Google Scholar
Kay, R. N. B. 1966. The influence of saliva on digestion in ruminants. World Review of Nutrition and Dietetics 6: 292325.CrossRefGoogle ScholarPubMed
Kennedy, P. M. 1985. Influences of cold exposure on digestion of organic matter, rates of passage of digesta in the gastrointestinal tract, and feeding and rumination behaviour in sheep given four forage diets in the chopped, or ground and pelleted form. British Journal of Nutrition 53: 159173.Google Scholar
Norton, B. W., Mackintosh, J. B. and Armstrong, D. G. 1982. Urea synthesis and degradation in sheep given pelleted-grass diets containing flaked barley. British Journal of Nutrition 48: 249264.CrossRefGoogle ScholarPubMed
Simmonds, H. A., Rising, T. J., Cadenhead, A., Hatfield, P. J., Jones, A. S. and Cameron, J. S. 1973. Radioisotope studies of purine metabolism during administration of guanine and allopurinol in the pig. Biochemical Pharmacology 22: 25532563.Google Scholar
Sorensen, L. B. 1978. Extrarenal disposal of uric acid. In Uric acid. Handbook of experimental pharmacology (ed. Kelley, W. N. and Weiner, I. M.), pp. 325336. Springer-Verlag, Berlin.Google Scholar
Statistical Analysis Systems Institute. 1988. SAS/STAT user's guide, version 6. SAS Institute Inc., Cary, NC.Google Scholar
Surra, J., Guada, J. A., Balcells, J. and Castrillo, C. 1993. Salivary losses of purine derivatives. Animal Production 56: 463 (abstr.).Google Scholar
Technicon Instruments Co. 1977. Technicon SMA II method no. SD4-00118k7. Technicon Instruments, Tarrytown, NY.Google Scholar
Verbic, J., Chen, X. B., MacLeod, N. A. and ørskov, E. R. 1990. Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion in steers. Journal of Agricultural Science, Cambridge 114: 243248.Google Scholar
Young, E. G. and Conway, C. F. 1942. On the estimation of allantoin by Rimini-Schryver reaction. Journal of Biological Chemistry 142: 839852.Google Scholar