Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-31T00:28:26.920Z Has data issue: false hasContentIssue false

Task-space dynamics and motion/force control of fixed-base manipulators under reaction null-space-based redundancy resolution

Published online by Cambridge University Press:  17 June 2015

Dragomir Nenchev*
Affiliation:
Graduate School of Engineering, Tokyo City University, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158-8557, Japan
Ryohei Okawa
Affiliation:
Graduate School of Engineering, Tokyo City University, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158-8557, Japan
Hiroki Sone
Affiliation:
Graduate School of Engineering, Tokyo City University, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158-8557, Japan
*
*Corresponding author. E-mail: nenchev@ieee.org

Summary

This paper introduces a task-space dynamics formulation for fixed-base serial-link kinematically redundant manipulators and a motion/force controller based on it. The aim is to alleviate joint-space instability problems that have been observed with other motion/force controllers. The dynamics are represented in floating-base coordinates, wherein the end effector is regarded as the floating base. This representation gives rise to a momentum-conserving redundancy resolution scheme based on the reaction null-space (RNS) method used in past studies on free-floating and flexible-base space robots. A generalized inverse is obtained that is shown to satisfy the conditions for dynamic consistency in the sense of the operational space (OS) formulation, but may lead to the joint-space instabilities observed earlier. The proposed controller is based on the pseudoinverse of the coupling inertia matrix and ensures reactionless link motion that does not disturb the force balance at the end effector. The performance of the RNS motion/force controller is examined by comparison to that with an OS motion/force controller. It is shown that while the performance in task-space of both controllers is satisfactory, the joint-space performance of the proposed controller is superior.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balestrino, A., De Maria, G. and Sciavicco, L., “Adaptive Control of Manipulators in the Task Oriented Space,” Proceedings 13th International Symposim Industrial Robots, Chicago, IL, (1983) pp. 131–146.Google Scholar
2. Hogan, N., “Impedance control: An approach to manipulation: Part II-implementation,” J. Dyn. Syst. Meas. Control 107 (1), 8 (1985). Available at: http://link.aip.org/link/JDSMAA/v107/i1/p8/s1&Agg=doi CrossRefGoogle Scholar
3. Hayati, S., “Hybrid Position/Force Control of Multi-Arm Cooperating Robots,” Proceedings IEEE International Conference on Robotics and Automation, San Francisco, CA (1986) pp. 82–89. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087650 Google Scholar
4. Khatib, O., “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Robot. Autom. 3 (1), 4353 (Feb. 1987). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087068 CrossRefGoogle Scholar
5. Villani, L. and De Schutter, J., “Force Control,” In: Springer Handbook of Robotics (Siciliano, B. and Khatib, O., eds.) (Berlin, Heidelberg: Springer Verlag, 2008) ch. 7, pp. 161186. Available at: http://www.springerlink.com/index/10.1007/978-3-540-30301-5 CrossRefGoogle Scholar
6. Hsu, P., Hauser, J. and Sastry, S., “Dynamic Control of Redundant Manipulators,” Proceedings IEEE International Conference on Robotics and Automation, IEEE Comput. Soc. Press, Philadelphia, PA, no. 6. (1988) pp. 183–187. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=12045 Google Scholar
7. Newman, W. and Dohring, M., “Augmented Impedance Control: An Approach to Compliant Control of Kinematically Redundant Manipulators,” Proceedings IEEE International Conference on Robotics and Automation, no. April, IEEE Comput. Soc. Press, Sacramento, CA (1991) pp. 30–35. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=131548 Google Scholar
8. Peng, Z.-X. and Adachi, N., “Compliant motion control of kinematically redundant manipulators,” IEEE Trans. Robot. Autom. 9 (6), 831836 (1993). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=265926 CrossRefGoogle Scholar
9. Khatib, O., “Inertial properties in robotic manipulation: An object-level framework,” Int. J. Robot. Res. 14 (1), 1936 (1995). Available at: http://ijr.sagepub.com/cgi/doi/10.1177/027836499501400103 CrossRefGoogle Scholar
10. Featherstone, R. and Khatib, O., “Load independence of the dynamically consistent inverse of the Jacobian matrix,” Int. J. Robot. Res. 16 (2), 168170 (Apr. 1997). Available at: http://ijr.sagepub.com/cgi/doi/10.1177/027836499701600203 Google Scholar
11. Baillieul, J., “Kinematic Programming Alternatives for Redundant Manipulators,” Proceedings IEEE International Conference on Robotics and Automation, St. Louis, MO (1985) pp. 722–728. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087234 Google Scholar
12. Park, J., Chung, W. and Youm, Y., “On Dynamical Decoupling of Kinematically Redundant Manipulators,” Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, Korea, vol. 3 (1999) pp. 1495–1500. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=811690 Google Scholar
13. Park, K. C., Chang, P.-H. and Lee, S., “Analysis and control of redundant manipulator dynamics based on an extended operational space,” Robotica 19 (06), 649662 (2001). Available at: http://www.journals.cambridge.org/abstract_S0263574701003599 Google Scholar
14. Ott, C., Kugi, A. and Nakamura, Y., “Resolving the Problem of Non-Integrability of Nullspace Velocities for Compliance Control of Redundant Manipulators by using Semi-Definite Lyapunov Functions,” Proceedings IEEE International Conference on Robotics and Automation, Pasadena, CA (May 2008) pp. 1999–2004. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543500 CrossRefGoogle Scholar
15. Natale, C., Siciliano, B. and Villani, L., “Spatial Impedance Control of Redundant Manipulators,” Proceedings IEEE International Conference on Robotics and Automation, Detroit, MI, vol. 3 (May, 1999) pp. 1788–1793. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=770368 Google Scholar
16. Nemec, B. and Zlajpah, L., “Null space velocity control with dynamically consistent pseudo-inverse,” Robotica 18 (5), 513518 (Sep. 2000). Available at: http://www.journals.cambridge.org/abstract_S0263574700002800 Google Scholar
17. Albu-Schaffer, A., Ott, C., Frese, U. and Hirzinger, G., “Cartesian Impedance Control of Redundant Robots: Recent Results with the DLR-Light-Weight-Arms,” Proceedings IEEE International Conference of Robotics and Automation, Taipei, Taiwan, vol. 3 (2003) pp. 3704–3709. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1242165&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1242165 Google Scholar
18. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J. and Schaal, S., “A unifying framework for robot control with redundant DOFs,” Auton. Robots 24 (1), 112 (Oct. 2008). Available at: http://link.springer.com/10.1007/s10514-007-9051-x Google Scholar
19. Hogan, N., “Impedance Control: An Approach to Manipulation,” Proceedings American Control Conference, San Diego, CA (1984) pp. 304–313.Google Scholar
20. Chang, K.-S. and Khatib, O., “Efficient Algorithm for Extended Operational Space Inertia Matrix,” Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, Korea, vol. 1 (1999) pp. 350–355. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=813028 Google Scholar
21. Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (Jun. 1985). Available at: http://ijr.sagepub.com/content/4/2/3.full.pdf+html Google Scholar
22. Nakanishi, J., Cory, R., Mistry, M., Peters, J. and Schaal, S., “Operational space control: A theoretical and empirical comparison,” Int. J. Robot. Res. 27 (6), 737757 (Jun. 2008). Available at: http://ijr.sagepub.com/cgi/doi/10.1177/0278364908091463 CrossRefGoogle Scholar
23. Hollerbach, J., “Redundancy resolution of manipulators through torque optimization,” IEEE J. Robot. Autom. 3 (4), 308316 (Aug. 1987). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087111 Google Scholar
24. Ma, S., Hirose, S. and Nenchev, D. N., “Improving local torque optimization techniques for redundant robotic mechanisms,” J. Robot. Syst. 8 (1), 7591 (Feb. 1991). Available at: http://doi.wiley.com/10.1002/rob.4620080106 Google Scholar
25. Oriolo, G. and Nakamura, Y., “Free-Joint Manipulators: Motion Control Under Second-Order Nonholonomic Constraints,” Proceedings IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan (1991) pp. 1248–1253. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=174671 Google Scholar
26. Ma, S. and Nenchev, D. N., “Local torque minimization for redundant manipulators: A correct formulation,” Robotica 14 (2), 235239 (Mar. 1996). Available at: http://journals.cambridge.org/abstract_S0263574700019159 Google Scholar
27. O'Neil, K., “Divergence of linear acceleration-based redundancy resolution schemes,” IEEE Trans. Robot. Autom. 18 (4), 625631 (Aug. 2002). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1044375 Google Scholar
28. Bowling, A. and Harmeyer, S., “Repeatable redundant manipulator control using nullspace quasivelocities,” J. Dyn. Syst. Meas. Control 132 (3), 031007 (2010). Available at: http://link.aip.org/link/JDSMAA/v132/i3/p031007/s1&Agg=doi Google Scholar
29. Sadeghian, H., Villani, L., Keshmiri, M. and Siciliano, B., “Dynamic multi-priority control in redundant robotic systems,” Robotica 31, 113 (May 2013). Available at: http://www.journals.cambridge.org/abstract_S0263574713000416 Google Scholar
30. Cefalo, M., Oriolo, G. and Vendittelli, M., “Planning Safe Cyclic Motions Under Repetitive Task Constraints,” Proceedings IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (May 2013) pp. 3807–3812. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6631112 Google Scholar
31. Zhang, Y., Guo, D. and Ma, S., “Different-level simultaneous minimization of joint-velocity and joint-torque for redundant robot manipulators,” J. Intell. Robot. Syst. 72 (3–4), 301323 (Mar. 2013). Available at: http://link.springer.com/10.1007/s10846-013-9816-8 Google Scholar
32. Nenchev, D., Yoshida, K. and Uchiyama, M., “Reaction Null-Space Based Control of Flexible Structure Mounted Manipulator Systems,” Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan (1996) pp. 4118–4123. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=577417 Google Scholar
33. Yoshida, K. and Nenchev, D., “Moving Base Robotics and Reaction Management Control,” Robotics Research: The 7th International Symposium (Giralt, G. and Hirzinger, G., ed.) (Springer Verlag, Herrsching, Germany, 1996) pp. 101109. Available at: http://link.springer.com/chapter/10.1007%2F978-1-4471-0765-1_11 Google Scholar
34. Nenchev, D., Yoshida, K. and Umetani, Y., “Introduction of Redundant Arms for Manipulation in Space,” IEEE/RSJ International Workshop on Intelligent Robots, Tokyo, Japan (1988) pp. 679–684. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=593682 Google Scholar
35. Gouo, A., Nenchev, D., Yoshida, K. and Uchiyama, M., “Motion control of dual-arm long-reach manipulators,” Adv. Robot. 13 (6), 617631 (Jan. 1998). Available at: http://www.tandfonline.com/doi/abs/10.1163/156855399X01846 Google Scholar
36. Nenchev, D., Yoshida, K., Vichitkulsawat, P. and Uchiyama, M., “Reaction null-space control of flexible structure mounted manipulator systems,” IEEE Trans. Robot. Autom. 15 (6), 10111023 (Dec. 1999). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=817666 Google Scholar
37. Abiko, S., Lampariello, R. and Hirzinger, G., “Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty,” Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (Oct. 2006) pp. 1020–1025. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4058497 Google Scholar
38. Hara, N., Handa, Y. and Nenchev, D., “End-Link Dynamics of Redundant Robotic Limbs: The Reaction Null Space Approach,” Proceedings IEEE International Conference on Robotics and Automation, Saint Paul, MN (May 2012) pp. 299–304. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224627 Google Scholar
39. Luh, J., Walker, M. and Paul, R., “Resolved-acceleration control of mechanical manipulators,” IEEE Trans. Autom. Control 25 (3), 468474 (Jun. 1980). Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1102367 Google Scholar