Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T22:05:23.087Z Has data issue: false hasContentIssue false

On the concept of probability

Published online by Cambridge University Press:  28 March 2014

MIOARA MUGUR-SCHÄCHTER*
Affiliation:
CeSEF (Centre pour la Synthèse d'une Epistémologie Formalisee) and adMCR (association pour le développement de la Méthode de Conceptualisation Relativisée), 47 Boulevard Georges Seurat, 92200 Neuilly-sur-Seine, France Email: mms@noos.fr

Abstract

In this paper, we discuss the crucial but little-known fact that, as Kolmogorov himself claimed, the mathematical theory of probabilities cannot be applied to factual probabilistic situations. This is because it is nowhere specified how, for any given particular random phenomenon, we should construct, effectively and without circularity, the specific and stable distribution law that gives the individual numerical probabilities for the set of possible outcomes. Furthermore, we do not even know what significance we should attach to the simple assertion that such a distribution law “exists”. We call this problem Kolmogorov's aporia.

We provide a solution to this aporia in this paper. To do this, we first propose a general interpretation of the concept of probability on the basis of an example, and then develop it into a non-circular and effective general algorithm of semantic integration for the factual probability law involved in a specific factual probabilistic situation. The development of the algorithm starts from the fact that the concept of probability, unlike a statistic, does not apply to naturally pre-existing situations but is a conceptual artefact that ensures, locally in space and time, a predictability that is more stable and definite than that permitted by primary statistical data.

The algorithm, which is constructed within a method of relativised conceptualisation, leads to a probability distribution expressed in rational numbers and involving a sort of quantification of the factual concept of probability. Furthermore, it also provides a definite meaning to the simple assertion that a factual probability law exists. We also show that the semantic integration algorithm is compatible with the weak law of large numbers.

The results we give provide a complete solution to Kolmogorov's aporia. They also define a concept of probability that is explicitly organised into a semantic, epistemological and syntactic whole. In a broader context, our results can be regarded as a strong, pragmatic and operational specification of Karl Popper's propensity interpretation of probabilities.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anandan, J. (2002) Causality, Symmetries and Quantum Mechanics. http://arxiv.org/abs/quant-ph/0112020.Google Scholar
Bailly, F. and Longo, G. (2007) Randomness and determination in the interplay between the continuum and the discrete. Mathematical Structures in Computer Science 17 289307.CrossRefGoogle Scholar
Ballentine, L. E. (1973) Can the statistical postulate of quantum theory be derived? Foundations of Physics 3 229240.CrossRefGoogle Scholar
Born, M. (1935) Atomic Physics, third edition, Blackie and Son.Google Scholar
Destouches-Février, P. (1946) Signification profonde du principe de décomposition spectrale. Comptes Rendus de l'Académie des Sciences 222 866–68.Google Scholar
Deutsch, D. (1999) Quantum Theory of Probability and Decisions. Proceedings of the Royal Society A455 31293197.CrossRefGoogle Scholar
Fessler, J-M. (2009) Private communication.Google Scholar
Gleason, A. M. (1957) Measures on the Closed Subspaces of a Hilbert Space. Journal of Mathematics and Mechanics 6 885–93.Google Scholar
Khinchin, A. I. (1957) Mathematical Foundations of Information Theory, Dover Publications.Google Scholar
Kolmogorov, A. N. (1933) Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse der Mathematik. (English translation: Kolmogorov, A. N. (1950) Foundations of the Theory of Probabilities, Chelsea Publishing Company.)Google Scholar
Kolmogorov, A. N. (1963) On tables of random numbers. Sankhyā Series A 176–183. (Reprinted in Shiryayev, A. N. (ed.) Selected works of A. N. Kolmogorov Volume III: Information Theory and the Theory of Algorithms, Kluwer.)Google Scholar
Kolmogorov, A. N. (1983) Combinatorial foundations of information theory and the calculus of probabilities. Russia Mathematical Surveys 38 2940.CrossRefGoogle Scholar
Longo, G. (2002) Laplace, Turing et la géométrie impossible du ‘jeu de l'imitation’ : aléas, déterminisme et programmes dans le test de Turing. Intellectica 2 (35). (English translation: Longo, G. (2007) Laplace, Turing and the ‘imitation game’ impossible geometry: randomness, determinism and programs in Turing's test. In: Epstein, R., Roberts, G. and Beber, G. (eds.) The Turing Test Sourcebook, Springer-Verlag.)Google Scholar
Mackey, G. (1963) Mathematical Foundations of Quantum Mechanics, Benjamin.Google Scholar
Mugur Schächter, M. (1964) Étude du caractère complet de la mécanique quantique, Gauthiers Villars.Google Scholar
Mugur Schächter, M. (1979) Study of Wigner's Theorem on Joint Probabilities. Foundations of Physics 9 (5–6)389404.CrossRefGoogle Scholar
Mugur Schächter, M. (1984) Esquisse d'une représentation générale et formalisée des descriptions et le statut descriptionnel de la mécanique quantique. Epistemological Letters Lausanne 36 167.Google Scholar
Mugur Schächter, M. (1991) Spacetime Quantum Probabilities I. Foundations of Physics 21 13871449.Google Scholar
Mugur Schächter, M. (1992a) Toward a Factually Induced Space–time Quantum Logic. Foundations of Physics 22 963994.CrossRefGoogle Scholar
Mugur Schächter, M. (1992b) Quantum Probabilities, Operators of State Preparation, and the Principle of Superposition. International Journal of Theoretical Physics 31 17151751.CrossRefGoogle Scholar
Mugur Schächter, M. (1992c) Spacetime Quantum Probabilities II: Relativized Descriptions and Popperian Propensities. Foundations of Physics 22 269303.CrossRefGoogle Scholar
Mugur Schächter, M. (1993) From Quantum Mechanics to Universal Structure of Conceptualization and Feedback on Quantum Mechanics. Foundations of Physics 23 37122.CrossRefGoogle Scholar
Mugur Schächter, M. (1995) Une méthode de conceptualisation relativisée. Revue Internationale de Systémique 9.Google Scholar
Mugur Schächter, M. (1997a) Les leçons de la mécanique quantique (vers une épistémologie formelle). Le Débat 94 (2)169192.CrossRefGoogle Scholar
Mugur Schächter, M. (1997b) Mécanique quantique, réel et sens. In: Physique et réalité, un débat avec Bernard d'Espagnat, Frontières.Google Scholar
Mugur Schächter, M. (2002a) Objectivity and Descriptional Relativities. Foundations of Science 7 73180.CrossRefGoogle Scholar
Mugur Schächter, M. (2002b) Quantum Mechanics versus Relativised Conceptualisation. In: Mugur-Schächter, M. and Van der Merwe, A. (eds.) Quantum Mechanics, Mathematics, Cognition and Action, Kluwer 109307.CrossRefGoogle Scholar
Mugur Schächter, M. (2002c) En marge de l'article de Giuseppe Longo sur Laplace, Turing et la géométrie impossible du ‘jeu d'imitation’. Intellectica 2 163174.Google Scholar
Mugur Schächter, M. (2006) Sur le tissage des connaissances, Hermès Science Publications.Google Scholar
Mugur Schächter, M. (2011) L'infra-mécanique quantique et invalidation conceptuelle du théorème de non-localité de Bell. arXiv:0903.4976v2 [quant-ph].Google Scholar
Mugur Schächter, M. (2013) Principles of a 2nd quantum mechanics: Construction of the foundations of an intelligible Hilbert–Dirac formulation. arXiv:1310.1728 [quant-ph]Google Scholar
Petitot, J. (2002) Debate with J. Petitot on mathematical physics and a formalized epistemology. In: Mugur-Schächter, M. and Van der Merwe, A. (eds.) Quantum Mechanics, Mathematics, Cognition and Action, Kluwer 73102.Google Scholar
Popper, K (1967) Quantum mechanics without the observer. In: Bunge, M. (ed.) Quantum Theory and Reality, Springer 744.CrossRefGoogle Scholar
Putnam, H. (1981) Reason, Truth and History, Cambridge University Press.CrossRefGoogle Scholar
Quine, W. V. O. (1977) Ontological Relativity and Other Essays, Columbia University Press.Google Scholar
Segal, J. (2003) Le zéro et le un, Syllepse.Google Scholar
Shannon, E. C. (1948) The Mathematical Theory of Communication. Bell System Technical Journal 27 379–423 and 623656.CrossRefGoogle Scholar
Solomonoff, R. J. (1957) An inductive inference machine. IRE National Record 5.Google Scholar