[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Michaelis-Menten kinetics at high enzyme concentrations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The total quasi-steady state approximation (tQSSA) for the irreversible Michaelis-Menten scheme is derived in a consistent manner. It is found that self-consistency of the initial transient guarantees the uniform validity of the tQSSA, but does not guarantee the validity of the linearization in the original derivation of Borghans et al. (1996, Bull. Math. Biol., 58, 43–63). Moreover, the present rederivation yielded the noteworthy result that the tQSSA is at least roughly valid for any substrate and enzyme concentrations. This reinforces and extends the original assertion that the parameter domain for which the tQSSA is valid overlaps the domain of validity of the standard quasi-steady state approximation and includes the limit of high enzyme concentrations. The criteria for the uniform validity of the original (linearized) tQSSA are corrected, and are used to derive approximate solutions that are uniformly valid in time. These approximations overlap and extend the domains of validity of the standard and reverse quasi-steady state approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, D. E. (1977). Cellular Energy Metabolism and its Regulation, New York: Academic Press.

    Google Scholar 

  • Borghans, J. A. M., R. J. De Boer and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.

    Article  MATH  Google Scholar 

  • Briggs, G. E. and J. B. S. Haldane (1925). A note on the kinetics of enzyme action. Biochem. J. 19, 338–339.

    Google Scholar 

  • Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996). On the Lambert W function. Adv. Comput. Math. 5, 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Gutfreund, H. and B. R. Hammond (1959). Steps in the reaction of chymotrypsin with tyrosine derivatives. Biochem. J. 73, 526–530.

    Google Scholar 

  • Kruskal, M. D. (1963). Asymptotology, in Mathematical Models in Physical Science, S. Drobot (Ed.), New Jersey: Prentice-Hall, pp. 17–48.

    Google Scholar 

  • Li, G., A. S. Tomlin, H. Rabitz and J. Toth (1993). Determination of approximate lumping schemes by a singular perturbation method. J. Chem. Phys. 99, 3562–3574.

    Article  Google Scholar 

  • Lim, H. C. (1973). On kinetic behavior at high enzyme concentrations. AIChE J. 19, 659–661.

    Article  Google Scholar 

  • Lin, C. C. and L. A. Segel (1988). Mathematics Applied to Deterministic Problems in the Natural Sciences, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), pp. 303–320.

    MATH  Google Scholar 

  • Michaelis, L. and M. L. Menten (1913). Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369.

    Google Scholar 

  • Schnell, S. and P. K. Maini (2000). Enzyme kinetics at high enzyme concentrations. Bull. Math. Biol. 62, 483–499.

    Article  Google Scholar 

  • Schnell, S. and P. K. Maini (2002). Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math. Comput. Model 35, 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Schnell, S. and C. Mendoza (1997). Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol 187, 207–212.

    Article  Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and M. Slemrod (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Sols, A. and R. Marco (1970). Concentrations of metabolites and binding sites. Implications in metabolic regulation, in Current Topics in Cellular Regulation, Vol. 2, B. Horecker and E. Stadtman (Eds), New York: Academic Press, pp. 227–273.

    Google Scholar 

  • van Slyke, D. D. and G. E. Cullen (1914). The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180.

    Google Scholar 

  • Tzafriri, A. R., M. Bercovier and H. Parnas (2002). Reaction diffusion modeling of the enzymatic erosion of insoluble fibrillar matrices. Biophys. J. 83, 776–793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzafriri, A.R. Michaelis-Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003). https://doi.org/10.1016/S0092-8240(03)00059-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00059-4

Keywords

Navigation