[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

An advanced electro-active dry adhesive, which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko’s toe. The properties of the NCNC-reinforced Nafion membrane, the electromechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6–2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nafion. The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 mN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der waals adhesion in gecko setae. Proceedings of the National Academy of Science, 2002, 99, 12252–12256.

    Article  Google Scholar 

  2. Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko’s foot-fair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  3. Xu Q, Wan Y, Hu T S, Liu T X, Tao D, Niewiarowski P H, Tian Y, Liu Y, Dai L, Yang Y, Xia Z. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communication, 2015, 6, 8949.

    Article  Google Scholar 

  4. Wang Z Y, Cai L, Li W, Ji A H, Wang W B, Dai Z D. Effect of slope degree on the lateral bending in Gekko geckos. Journal of Bionic Engineering, 2015, 12, 238–249.

    Article  Google Scholar 

  5. Yu M, He Q S, Yu D S, Zhang X Q, Ji A H, Zhang H, Guo C, Dai Z D. Efficient active actuation to imitate locomotion of gecko’s toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes. Applied Physics Letters, 2012, 101, 163701.

    Article  Google Scholar 

  6. Hawkes E W, Ulmen J, Esparza N, Cutkosky M R. Scaling walls: Applying dry adhesives to the real world. 201IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 5100–5106.

    Google Scholar 

  7. Dickinson M H, Farley C T, Full R J. How animals move: An integrative view. Science, 2000, 288, 100–106.

    Article  Google Scholar 

  8. Tadokoro S, Fuji S, Takamori T, Oguro K. Distributed actuation devices using soft gel actuators. In: Böhringer K F, Choset H, eds., Distributed Manipulation, Springer, USA, 2000, 217–235.

    Chapter  Google Scholar 

  9. Baughman R H. Playing nature’s game with artificial muscle. Science, 2005, 308, 63–65.

    Article  Google Scholar 

  10. Shen Q, Trabia S, Stalbaum T, Palmre V, Kim K J, Oh I K. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Scientific Reports, 2016, 6, 24462.

    Article  Google Scholar 

  11. Gong Y Q, Fan J P, Tang C Y, Tsui C P. Numerical simulation of dynamic electro-mechanical response of ionic polymer-metal composites. Journal of Bionic Engineering, 2011, 8, 263–272.

    Article  Google Scholar 

  12. Jung J H, Jeon J H, Sridhar V, Oh I K. Electro-active graphene-Nafion actuators. Carbon, 2011, 49, 1279–1289.

    Article  Google Scholar 

  13. Feng G H, Zhan Z H. A room-temperature processed parylene-patterned helical ionic polymer–metal composite spring actuator with selectable active region. Smart Materials and Structures, 2014, 23, 045002.

    Article  Google Scholar 

  14. He Q S, Yu M, Song L L, Ding H T, Zhang X Q, Dai Z D. Experimental study and model analysis of the performance of IPMC membranes with various thickness. Journal of Bionic Engineering, 2011, 8, 77–85.

    Article  Google Scholar 

  15. Trabia S, Hwang T, Kim K J. A fabrication method of unique Nafion® shapes by painting for ionic polymer-metal composites. Smart Materials and Structures, 2016, 25, 085006.

    Article  Google Scholar 

  16. Wang Y J, Zhu Z C, Liu J Y, Chang L F, Chen H L. Effects of surface roughening of Nafion 11on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMCactuators. Smart Materials and Structures, 2016, 25, 085012.

    Article  Google Scholar 

  17. Vokoun D, He Q S, Heller L, Yu M, Dai Z D. Modeling of IPMC cantilever’s displacements and blocking forces. Journal of Bionic Engineering, 2015, 12, 142–151.

    Article  Google Scholar 

  18. Jo C, Pugal D, Oh I K, Kim K J, Asaka K. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Progress in Polymer Science, 2013, 38, 1037–1066.

    Article  Google Scholar 

  19. Punning A, Kim K J, Palmre V, Vidal F, Plesse C, Festin N, Maziz A, Asaka K, Sugino T, Alici G, Spinks G, Wallace G, Must I, Põldsalu I, Vunder V, Temmer R, Kruusamäe K, Torop J, Kaasik F, Rinne P, Johanson U, Peikolainen A L, Tamm T, Aabloo A. Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.

    Article  Google Scholar 

  20. Zhu Z C, Asaka K, Chang L F, Takagi K, Chen H L. Multiphysics of ionic polymer-metal composite actuator. Journal of Applied Physics, 2013, 114, 084902.

    Article  Google Scholar 

  21. Zhou Y, Chiu C W, Sanchez C J, González J M, Epstein B, Rhodes D, Vinson S B, Liang H. Sound modulation in singing katydids using ionic polymer-metal composites (IPMCs). Journal of Bionic Engineering, 2013, 10, 464–468.

    Article  Google Scholar 

  22. Ji A H, Park H C, Nguyen Q V, Lee J W, Yoo Y T. Verification of beam models for ionic polymer-metal composite actuator. Journal of Bionic Engineering, 2009, 6, 232–238.

    Article  Google Scholar 

  23. Feng G H, Tsai J W. Micromachined optical fiber enclosed 4-electrode IPMC actuator with multidirectional control ability for biomedical application. Biomedical Microdevices, 2011, 13, 169–177.

    Article  Google Scholar 

  24. Kim K J, Tadokoro S. Electroactive Polymers for Robotic Applications. Springer-Verlag, London, UK, 2007.

    Book  Google Scholar 

  25. Liu C, Li F, Ma L P, Cheng H M. Advanced materials for energy storage. Advanced Materials, 2010, 22, E28–E62.

    Article  Google Scholar 

  26. Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Carbon nanocages as supercapacitor electrode materials. Advanced Materials, 2012, 24, 347–352.

    Article  Google Scholar 

  27. Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J, Hu Z. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Advanced Materials, 2015, 27, 3541–3545.

    Article  Google Scholar 

  28. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Advanced Materials, 2012, 24, 5593–5597.

    Article  Google Scholar 

  29. Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface, 2007, 4, 271–275.

    Article  Google Scholar 

  30. Varenberg M, Gorb S. Shearing of fibrillar adhesive microstructure: Friction and shear-related changes in pull-off force. Journal of the Royal Society Interface, 2007, 4, 721–725.

    Article  Google Scholar 

  31. Heepe L, Gorb S. Biologically inspired mushroom-shaped adhesive microstructures. Annual Review of Materials Research, 2014, 44, 173–203.

    Article  Google Scholar 

  32. He Q S, Song L L, Yu M, Dai Z D. Fabrication, characteristics and electrical model of an ionic polymer metal-carbon nanotube composites. Smart Materials and Structures, 2015, 24, 075001.

    Article  Google Scholar 

  33. Wang Z Y, Dai Z D, Yu Z W, Shen D N. Optimal attaching and detaching trajectory for bio-inspired climbing robot using dry adhesive. 201IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besancon, France, 2014, 990–993.

    Google Scholar 

  34. Tiwari R, Kim K J. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Applied Physics Letters, 2010, 97, 244104.

    Article  Google Scholar 

  35. Sun K N, Li A M. Carbon Nanotube Composites. China Machine Press, Beijing, China, 2010.

    Google Scholar 

  36. Jung J H, Vadahanambi S, Oh I K. Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Composites Science and Technology, 2010, 70, 584–592.

    Article  Google Scholar 

  37. Choudalakis G, Gotsis A D. Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 2009, 45, 967–84.

    Article  Google Scholar 

  38. Kim J, Jeon J H, Kim H J, Lim H, Oh I K. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano, 2014, 8, 2986–2997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Yu or Zhendong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Yang, X., Wang, Z. et al. Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages. J Bionic Eng 14, 567–578 (2017). https://doi.org/10.1016/S1672-6529(16)60422-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60422-5

Keywords