[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Inflammation is characterized as a defensive response of our body against endogenous or exogenous stimuli. Chronic inflammation and oxidative stress play an important role in the pathogenesis of various disorders such as asthma, cancers, and multiple sclerosis. Recently, diverse pharmacological activities of auraptene, a natural prenyloxycoumarin, were reported. In the present study, we aimed to evaluate the anti-oxidative and anti-inflammatory effects of auraptene on human isolated lymphocytes.

Method

The effects of auraptene (10, 30 and 90 μM) and dexamethasone (0.1 mM) were evaluated on cell viability, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and total glutathione content (GSH) as well as the secretion of interleukin 6 (IL-6) and tumor necrosis factor (TNF)-α in phytohemagglutinin (PHA)-stimulated human lymphocytes.

Results

Auraptene (10–90 μM) did not affect lymphocytes' viability after 48 h incubation. PHA markedly elevated ROS, MDA, IL-6, and TNF-α levels, while diminished the GSH content, and CAT and SOD activities in human lymphocytes (p < 0.001 for all cases). Treatment with auraptene (10–90 µM) significantly ameliorated ROS, MDA, IL-6, and TNF-α levels, and markedly increased GSH content, and CAT and SOD activities (p <  0.5−0.001).

Conclusion

Auraptene may possess promising healing effects in the different inflammatory disorders associated with activation of the acquired immune system such as multiple sclerosis and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Investig. 2001;107:7–11.

    Article  CAS  Google Scholar 

  2. Askari VR, Baradaran Rahimi V, Tabatabaee SA, Shafiee-Nick R. Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol. 2019;77:105923.

    Article  CAS  Google Scholar 

  3. Fu P, Birukova AA, Sammani S, Burdette D, Murley JS, Garcia JGN, et al. Amifostine reduces lung vascular permeability via suppression of inflammatory signaling. Eur Respir J. 2009;33:612–24.

    Article  CAS  Google Scholar 

  4. Askari VR, Shafiee-Nick R. The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: a mechanistic evaluation. Life Sci. 2019;219:40–73.

    Article  CAS  Google Scholar 

  5. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264.

    Article  Google Scholar 

  6. Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep. 2019;71:1228–344.

    Article  CAS  Google Scholar 

  7. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24:1583.

    Article  CAS  Google Scholar 

  8. Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M. The effects of oxidative stress on the development of atherosclerosis. Biol Chem. 2019;400:711–32.

    Article  CAS  Google Scholar 

  9. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  CAS  Google Scholar 

  10. Derosa G, Maffioli P, Sahebkar A. Auraptene and its role in chronic diseases. Adv Exp Med Biol. 2016;929:399–407.

    Article  CAS  Google Scholar 

  11. Genovese S, Epifano F. Auraptene: a natural biologically active compound with multiple targets. Curr Drug Targets. 2011;12:381–6.

    Article  CAS  Google Scholar 

  12. Askari VR, Rezaee SA, Abnous K, Iranshahi M, Boskabady MH. The influence of hydro-ethanolic extract of Portulaca oleracea L. on Th1/Th2 balance in isolated human lymphocytes. J Ethnopharmacol. 2016;194:1112–21.

    Article  Google Scholar 

  13. Askari VR, Baradaran Rahimi V, Rezaee SA, Boskabady MH. Auraptene regulates Th1/Th2/TReg balances, NF-kappaB nuclear localization and nitric oxide production in normal and Th2 provoked situations in human isolated lymphocytes. Phytomedicine. 2018;43:1–10.

    Article  CAS  Google Scholar 

  14. Askari VR, Baradaran Rahimi V, Assaran A, Iranshahi M, Boskabady MH. Evaluation of the anti-oxidant and anti-inflammatory effects of the methanolic extract of Ferula szowitsiana root on PHA-induced inflammation in human lymphocytes. Drug Chem Toxicol. 2019. https://doi.org/10.1080/01480545.2019.1572182.

    Article  PubMed  Google Scholar 

  15. Baradaran Rahimi V, Mousavi SH, Haghighi S, Soheili-Far S, Askari VR. Cytotoxicity and apoptogenic properties of the standardized extract of Portulaca oleracea on glioblastoma multiforme cancer cell line (U-87): a mechanistic study. EXCLI J. 2019;18:165–86.

    PubMed  PubMed Central  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  17. Rahimi VB, Askari VR, Mousavi SH. Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ. Life Sci. 2019;232:116595.

    Article  Google Scholar 

  18. Baradaran RV, Rakhshandeh H, Raucci F, Buono B, Shirazinia R, Samzadeh KA, et al. Anti-inflammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury. Molecules. 2019;24:139.

    Article  Google Scholar 

  19. Halasi M, Wang M, Chavan TS, Gaponenko V, Hay N, Gartel AL. ROS inhibitor N-acetyl-l-cysteine antagonizes the activity of proteasome inhibitors. Biochem J. 2013;454:201–8.

    Article  CAS  Google Scholar 

  20. Bayat M, Kalantar K, Amirghofran Z. Inhibition of interferon-gamma production and T-bet expression by menthol treatment of human peripheral blood mononuclear cells. Immunopharmacol Immunotoxicol. 2019;41(2):267–76.

    Article  CAS  Google Scholar 

  21. Liu Y-N, Liu T-T, Fan Y-L, Niu D-M, Chien Y-H, Chou Y-Y, et al. Measuring propionyl-CoA carboxylase activity in phytohemagglutinin stimulated lymphocytes using high performance liquid chromatography. Clin Chim Acta. 2016;453:13–20.

    Article  CAS  Google Scholar 

  22. Lee CY, Man-Fan WJ. Vitamin E supplementation improves cell-mediated immunity and oxidative stress of Asian men and women. J Nutr. 2000;130:2932–7.

    Article  CAS  Google Scholar 

  23. Tossige-Gomes R, Costa KB, Ottone Vde O, Magalhaes Fde C, Amorim FT, Rocha-Vieira E. Lymphocyte redox imbalance and reduced proliferation after a single session of high intensity interval exercise. PLoS One. 2016;11:e0153647.

    Article  Google Scholar 

  24. Niu X, Huang Z, Zhang L, Ren X, Wang J. Auraptene has the inhibitory property on murine T lymphocyte activation. Eur J Pharmacol. 2015;750:8–13.

    Article  CAS  Google Scholar 

  25. Moro-Garcia MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339.

    Article  Google Scholar 

  26. Iranshahi M, Arfa P, Ramezani M, Jaafari MR, Sadeghian H, Bassarello C, et al. Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry. 2007;68:554–61.

    Article  CAS  Google Scholar 

  27. Ghanbarabadi M, Iranshahi M, Amoueian S, Mehri S, Motamedshariaty VS, Mohajeri SA. Neuroprotective and memory enhancing effects of auraptene in a rat model of vascular dementia: experimental study and histopathological evaluation. Neurosci Lett. 2016;623:13–211.

    Article  CAS  Google Scholar 

  28. La VD, Zhao L, Epifano F, Genovese S, Grenier D. Anti-inflammatory and wound healing potential of citrus auraptene. J Med Food. 2013;16:961–4.

    Article  CAS  Google Scholar 

  29. Okuyama S, Morita M, Kaji M, Amakura Y, Yoshimura M, Shimamoto K, et al. Auraptene acts as an anti-inflammatory agent in the mouse brain. Molecules. 2015;20:20230–9.

    Article  CAS  Google Scholar 

  30. Goulding NJ, Ogbourn S, Pipitone N, Biagini P, Gerli R, Pitzalis C. The inhibitory effect of dexamethasone on lymphocyte adhesion molecule expression and intercellular aggregation is not mediated by lipocortin 1. Clin Exp Immunol. 1999;118:376–83.

    Article  CAS  Google Scholar 

  31. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2–13.

    Article  CAS  Google Scholar 

  32. Takahashi N, Kang MS, Kuroyanagi K, Goto T, Hirai S, Ohyama K, et al. Auraptene, a citrus fruit compound, regulates gene expression as a PPARalpha agonist in HepG2 hepatocytes. Biofactors. 2008;33:25–322.

    Article  CAS  Google Scholar 

  33. Gao X, Fu T, Wang C, Ning C, Kong Y, Liu Z, et al. Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury. Biochem Pharmacol. 2017;146:127–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study financially supported by the research council of Mashhad University of Medical Sciences and Iran National Science Foundation (93025105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Boskabady.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, V.R., Rahimi, V.B., Zargarani, R. et al. Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol. Rep 73, 154–162 (2021). https://doi.org/10.1007/s43440-020-00083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00083-5

Keywords

Navigation