[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reproductive Effects of Nicotinamide on Testicular Function and Structure in Old Male Rats: Oxidative, Apoptotic, Hormonal, and Morphological Analyses

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Aging is a natural process in which morphological and functional abnormalities in living organisms increase irreversibly. Nicotinamide (NAM) acts both as a precursor of many metabolites and as a cofactor of many enzymes involved in cell energy metabolism, homeostasis of redox balance, and regulation of signaling pathways. In this study, we investigated the effects of NAM treatment on morphological and biochemical changes in testis of old rats. The rats were treated with 200, 400, and 800 mg/kg NAM doses as a gavage for 1 month. As a result, we determined the dose-dependent therapeutic effects of NAM on testicular tissues of aged rats. We found that NAM treatment decreased total oxidant status (TOS), caspase 3 (CASP3) and cytochrome c (CYC) levels and increased total antioxidant status (TAS), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels (P<0.05). NAM treatment significantly reduced the age-related histopathological parameters such as cellular loss, necrotic tissue, interstitial edema, tubular damage, and vascular congestion in aged rat testicular tissue compared to the control group. Moreover, based on histomorphological analysis, we detected that NAM treatment resulted in a dose-dependent improvement in testicular tissue damage of old rats. Consequently, the results showed that the reproductive decline caused by aging could be ameliorated with NAM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Finkel T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol. 2005;6(12):971–6. https://doi.org/10.1038/nrm1763.

    Article  CAS  PubMed  Google Scholar 

  2. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–27. https://doi.org/10.1016/j.cell.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  3. Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontol. 2017;18(6):859–79. https://doi.org/10.1007/s10522-017-9710-z.

    Article  CAS  Google Scholar 

  4. Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR. Leydig cell aging and hypogonadism. Exp Gerontol. 2015;68:87–91. https://doi.org/10.1016/j.exger.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salisbury D, Bronas U. Reactive oxygen and nitrogen species: impact on endothelial dysfunction. Nurs Res. 2015;64(1):53–66. https://doi.org/10.1097/NNR.0000000000000068.

    Article  PubMed  Google Scholar 

  6. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19(9):1807–19. https://doi.org/10.1016/j.cellsig.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  7. Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sci. 2016;3(3):300–24. https://doi.org/10.3934/molsci.2016.3.300.

    Article  CAS  Google Scholar 

  8. Tenover JS. Declining testicular function in aging men. Int J Impot Res. 2003;15(4):3–8. https://doi.org/10.1038/sj.ijir.3901029.

    Article  CAS  Google Scholar 

  9. Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol. 2004;88(1):61–7. https://doi.org/10.1016/j.jsbmb.2003.10.007.

    Article  CAS  PubMed  Google Scholar 

  10. Salomon TB, Hackenhaar FS, Almeida AC, Schüller AK, Gil Alabarse PV, Ehrenbrink G, et al. Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol. 2013;48(9):940–6. https://doi.org/10.1016/j.exger.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  11. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016;23(2):303–14. https://doi.org/10.1016/j.cmet.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  12. Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Phys Regul Integr Comp Phys. 2002;282(2):423–30. https://doi.org/10.1152/ajpregu.00296.2001.

    Article  Google Scholar 

  13. Golan R, Scovell JM, Ramasamy R. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function. Aging Male. 2015;18(3):201–4. https://doi.org/10.3109/13685538.2015.1052392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Chen F, Ye L, Zirkin B, Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction. 2017;154(4):111–22. https://doi.org/10.1530/REP-17-0064.

    Article  PubMed  Google Scholar 

  15. Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009;14(9):3446–85. https://doi.org/10.3390/molecules14093446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol. 2012;199(2):205–9. https://doi.org/10.1083/jcb.201207019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://doi.org/10.1111/acel.12461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie L, Wang Z, Li C, Yang K, Liang Y. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis. J Clin Neurosci. 2017;36:114–9. https://doi.org/10.1016/j.jocn.2016.10.038.

    Article  CAS  PubMed  Google Scholar 

  19. Shomali T, Taherianfard M, Dalvand M, Namazi F. Effect of pharmacological doses of niacin on testicular structure and function in normal and diabetic rats. Andrologia. 2018;50(10):e13142. https://doi.org/10.1111/and.13142.

    Article  CAS  PubMed  Google Scholar 

  20. Cicero TJ, Bell RD, Carter JG, Chi MM, Lowry OH. Role of nicotinamide adenine dinucleotide in ethanol-induced depressions in testicular steroidogenesis. Biochem Pharmacol. 1983;32(1):107–13. https://doi.org/10.1016/0006-2952(83)90661-5.

    Article  CAS  PubMed  Google Scholar 

  21. Couturier A, Ringseis R, Most E, Eder K. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. BMC Pharmacol Toxicol. 2014;15:37. https://doi.org/10.1186/2050-6511-15-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lipsky MS, King M. Biological theories of aging. Dis Mon. 2015;61(11):460–6. https://doi.org/10.1016/j.disamonth.2015.09.005.

    Article  PubMed  Google Scholar 

  23. Petropoulou C, Chondrogianni N, Simões D, Agiostratidou G, Drosopoulos N, Kotsota V, et al. Aging and longevity. A paradigm of complementation between homeostatic mechanisms and genetic control? Ann N Y Acad Sci. 2000;908:133–42. https://doi.org/10.1111/j.1749-6632.2000.tb06642.x.

    Article  CAS  PubMed  Google Scholar 

  24. Jin K. Modern biological theories of aging. Aging Dis. 2010;1(2):72–4.

    PubMed  PubMed Central  Google Scholar 

  25. Golden T, Morten K, Johnson F, Samper E, Melov S. Mitochondria: A critical role in aging. Handbook of the Biology of Aging, 6th Ed. Academic Press; 2005. pp. 124–148. https://doi.org/10.1016/B978-012088387-5/50008-X

  26. Dodig S, Cepelak I, Pavic I. Hallmarks of senescence and aging. Biochem Med (Zagreb). 2019;29(3):030501. https://doi.org/10.11613/BM.2019.030501.

    Article  Google Scholar 

  27. Rebrin I, Sohal RS. Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol. 2004;39(10):1513–9. https://doi.org/10.1016/j.exger.2004.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6(4):e19194. https://doi.org/10.1371/journal.pone.0019194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakae D, Akai H, Kishida H, Kusuoka O, Tsutsumi M, Konishi Y. Age and organ dependent spontaneous generation of nuclear 8-hydroxydeoxyguanosine in male Fischer 344 rats. Lab Investig. 2000;80(2):249–61. https://doi.org/10.1038/labinvest.3780028.

    Article  CAS  PubMed  Google Scholar 

  30. Rizvi SI, Maurya PK. Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci. 2007;1100:373–82. https://doi.org/10.1196/annals.1395.041.

    Article  CAS  PubMed  Google Scholar 

  31. Powers RW, Majors AK, Lykins DL, Sims CJ, Lain KY, Roberts JM. Plasma homocysteine and malondialdehyde are correlated in an age- and gender-specific manner. Metabolism. 2002;51(11):1433–8. https://doi.org/10.1053/meta.2002.35587.

    Article  CAS  PubMed  Google Scholar 

  32. Yang W, Burkhardt B, Fischer L, Beirow M, Bork N, Wönne EC, et al. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 2015;14:1273–90. https://doi.org/10.17179/excli2015-734.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157(4):882–96. https://doi.org/10.1016/j.cell.2014.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, et al. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction. 2019;158(2):169–79. https://doi.org/10.1530/REP-18-0574.

    Article  PubMed  Google Scholar 

  35. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. https://doi.org/10.1152/physrev.00018.2001.

    Article  PubMed  Google Scholar 

  36. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040.

    Article  CAS  PubMed  Google Scholar 

  37. Jacob KD, Noren HN, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev. 2013;134(3-4):139–57. https://doi.org/10.1016/j.mad.2013.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yanagi S, Tsubouchi H, Miura A, Matsuo A, Matsumoto N, Nakazato M. The Impacts of Cellular Senescence in Elderly Pneumonia and in Age-Related Lung Diseases That Increase the Risk of Respiratory Infections. Int J Mol Sci. 2017;18(3):503. https://doi.org/10.3390/ijms18030503.

    Article  CAS  PubMed Central  Google Scholar 

  39. Wang X, Bonventre JV, Parrish AR. The aging kidney: increased susceptibility to nephrotoxicity. Int J Mol Sci. 2014;15(9):15358–76. https://doi.org/10.3390/ijms150915358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123(Pt15):2533–42. https://doi.org/10.1242/jcs.070490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev. 2016;155:10–21. https://doi.org/10.1016/j.mad.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  42. Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol. 2015;63:21–4. https://doi.org/10.1016/j.biocel.2015.01.023.

    Article  CAS  PubMed  Google Scholar 

  43. Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci. 2001;56(11):475–82. https://doi.org/10.1093/gerona/56.11.b475.

    Article  Google Scholar 

  44. Taglialatela G, Gegg M, Perez-Polo JR, Williams LR, Rose GM. Evidence for DNA fragmentation in the CNS of aged Fischer-344 rats. Neuroreport. 1996;7(5):977–80. https://doi.org/10.1097/00001756-199604100-00004.

    Article  CAS  PubMed  Google Scholar 

  45. Higami Y, Shimokawa I, Tomita M, Okimoto T, Koji T, Kobayashi N, et al. Aging accelerates but life-long dietary restriction suppresses apoptosis-related Fas expression on hepatocytes. Am J Pathol. 1997;151(3):659–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams CS, Horton WE Jr. Chondrocyte apoptosis increases with age in the articular cartilage of adult animals. Anat Rec. 1998;250(4):418–25. https://doi.org/10.1002/(SICI)1097-0185(199804)250:4<418::AID-AR4>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  47. Kapasi AA, Singhal PC. Aging splenocyte and thymocyte apoptosis is associated with enhanced expression of p53, bax, and caspase-3. Mol Cell Biol Res Commun. 1999;1(1):78–81. https://doi.org/10.1006/mcbr.1999.0106.

    Article  CAS  PubMed  Google Scholar 

  48. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, et al. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med. 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TMA. 2018;2:30–7. https://doi.org/10.1016/j.tma.2018.08.003.

    Article  Google Scholar 

  50. Kang HT, Lee HI, Hwang ES. Nicotinamide extends replicative lifespan of human cells. Aging Cell. 2006;5(5):423–36. https://doi.org/10.1111/j.1474-9726.2006.00234.x.

    Article  CAS  PubMed  Google Scholar 

  51. Tong DL, Zhang DX, Xiang F, Teng M, Jiang XP, Hou JM, et al. Nicotinamide pretreatment protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology. 2012;90(1-2):11–8. https://doi.org/10.1159/000338628.

    Article  CAS  PubMed  Google Scholar 

  52. Paul C, Robaire B. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases. PLoS One. 2013;8(12):e84354. https://doi.org/10.1371/journal.pone.0084354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22–33. https://doi.org/10.1016/j.arr.2014.10.007.

    Article  PubMed  Google Scholar 

  54. Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88(1):179–84. https://doi.org/10.1210/jc.2002-020408.

    Article  CAS  PubMed  Google Scholar 

  55. Neves BVD, Lorenzini F, Veronez D, Miranda EP, Neves GD, Fraga R. Numeric and volumetric changes in Leydig cells during aging of rats. Acta Cir Bras. 2017;32(10):807–15. https://doi.org/10.1590/s0102-865020170100000002.

    Article  PubMed  Google Scholar 

  56. Gunes S, Hekim GN, Arslan MA, Asci R. Effects of aging on the male reproductive system. J Assist Reprod Genet. 2016;33(4):441–54. https://doi.org/10.1007/s10815-016-0663-y.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Handelsman DJ. Aging in the hypothalamic-pituitary-testicular axis: Knobil and Neill’s Physiology of Reproduction, 3rd Ed. Elsevier; 2006. pp. 2697–2728.

  58. Dakouane M, Bicchieray L, Bergere M, Albert M, Vialard F, Selva J. A histomorphometric and cytogenetic study of testis from men 29-102 years old. Fertil Steril. 2005;83(4):923–8. https://doi.org/10.1016/j.fertnstert.2004.12.005.

    Article  PubMed  Google Scholar 

  59. Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J Gerontol A Biol Sci Med Sci. 2019;74(6):860–71. https://doi.org/10.1093/gerona/gly082.

    Article  CAS  PubMed  Google Scholar 

  60. Pop OT, Cotoi CG, Plesea IE, Gherghiceanu M, Enache SD, Mandache E, et al. Histological and ultrastructural analysis of the seminiferous tubule wall in ageing testis. Romanian J Morphol Embryol. 2011;52(1 Suppl):241–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Kar, F. & Kanbak, G. Reproductive Effects of Nicotinamide on Testicular Function and Structure in Old Male Rats: Oxidative, Apoptotic, Hormonal, and Morphological Analyses. Reprod. Sci. 28, 3352–3360 (2021). https://doi.org/10.1007/s43032-021-00647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00647-7

Keywords