Abstract
Aging is a natural process in which morphological and functional abnormalities in living organisms increase irreversibly. Nicotinamide (NAM) acts both as a precursor of many metabolites and as a cofactor of many enzymes involved in cell energy metabolism, homeostasis of redox balance, and regulation of signaling pathways. In this study, we investigated the effects of NAM treatment on morphological and biochemical changes in testis of old rats. The rats were treated with 200, 400, and 800 mg/kg NAM doses as a gavage for 1 month. As a result, we determined the dose-dependent therapeutic effects of NAM on testicular tissues of aged rats. We found that NAM treatment decreased total oxidant status (TOS), caspase 3 (CASP3) and cytochrome c (CYC) levels and increased total antioxidant status (TAS), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels (P<0.05). NAM treatment significantly reduced the age-related histopathological parameters such as cellular loss, necrotic tissue, interstitial edema, tubular damage, and vascular congestion in aged rat testicular tissue compared to the control group. Moreover, based on histomorphological analysis, we detected that NAM treatment resulted in a dose-dependent improvement in testicular tissue damage of old rats. Consequently, the results showed that the reproductive decline caused by aging could be ameliorated with NAM treatment.
Similar content being viewed by others
References
Finkel T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol. 2005;6(12):971–6. https://doi.org/10.1038/nrm1763.
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–27. https://doi.org/10.1016/j.cell.2019.10.005.
Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontol. 2017;18(6):859–79. https://doi.org/10.1007/s10522-017-9710-z.
Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR. Leydig cell aging and hypogonadism. Exp Gerontol. 2015;68:87–91. https://doi.org/10.1016/j.exger.2015.02.014.
Salisbury D, Bronas U. Reactive oxygen and nitrogen species: impact on endothelial dysfunction. Nurs Res. 2015;64(1):53–66. https://doi.org/10.1097/NNR.0000000000000068.
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19(9):1807–19. https://doi.org/10.1016/j.cellsig.2007.04.009.
Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sci. 2016;3(3):300–24. https://doi.org/10.3934/molsci.2016.3.300.
Tenover JS. Declining testicular function in aging men. Int J Impot Res. 2003;15(4):3–8. https://doi.org/10.1038/sj.ijir.3901029.
Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol. 2004;88(1):61–7. https://doi.org/10.1016/j.jsbmb.2003.10.007.
Salomon TB, Hackenhaar FS, Almeida AC, Schüller AK, Gil Alabarse PV, Ehrenbrink G, et al. Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol. 2013;48(9):940–6. https://doi.org/10.1016/j.exger.2013.06.010.
Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016;23(2):303–14. https://doi.org/10.1016/j.cmet.2015.11.011.
Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Phys Regul Integr Comp Phys. 2002;282(2):423–30. https://doi.org/10.1152/ajpregu.00296.2001.
Golan R, Scovell JM, Ramasamy R. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function. Aging Male. 2015;18(3):201–4. https://doi.org/10.3109/13685538.2015.1052392.
Wang Y, Chen F, Ye L, Zirkin B, Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction. 2017;154(4):111–22. https://doi.org/10.1530/REP-17-0064.
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009;14(9):3446–85. https://doi.org/10.3390/molecules14093446.
Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol. 2012;199(2):205–9. https://doi.org/10.1083/jcb.201207019.
de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://doi.org/10.1111/acel.12461.
Xie L, Wang Z, Li C, Yang K, Liang Y. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis. J Clin Neurosci. 2017;36:114–9. https://doi.org/10.1016/j.jocn.2016.10.038.
Shomali T, Taherianfard M, Dalvand M, Namazi F. Effect of pharmacological doses of niacin on testicular structure and function in normal and diabetic rats. Andrologia. 2018;50(10):e13142. https://doi.org/10.1111/and.13142.
Cicero TJ, Bell RD, Carter JG, Chi MM, Lowry OH. Role of nicotinamide adenine dinucleotide in ethanol-induced depressions in testicular steroidogenesis. Biochem Pharmacol. 1983;32(1):107–13. https://doi.org/10.1016/0006-2952(83)90661-5.
Couturier A, Ringseis R, Most E, Eder K. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. BMC Pharmacol Toxicol. 2014;15:37. https://doi.org/10.1186/2050-6511-15-37.
Lipsky MS, King M. Biological theories of aging. Dis Mon. 2015;61(11):460–6. https://doi.org/10.1016/j.disamonth.2015.09.005.
Petropoulou C, Chondrogianni N, Simões D, Agiostratidou G, Drosopoulos N, Kotsota V, et al. Aging and longevity. A paradigm of complementation between homeostatic mechanisms and genetic control? Ann N Y Acad Sci. 2000;908:133–42. https://doi.org/10.1111/j.1749-6632.2000.tb06642.x.
Jin K. Modern biological theories of aging. Aging Dis. 2010;1(2):72–4.
Golden T, Morten K, Johnson F, Samper E, Melov S. Mitochondria: A critical role in aging. Handbook of the Biology of Aging, 6th Ed. Academic Press; 2005. pp. 124–148. https://doi.org/10.1016/B978-012088387-5/50008-X
Dodig S, Cepelak I, Pavic I. Hallmarks of senescence and aging. Biochem Med (Zagreb). 2019;29(3):030501. https://doi.org/10.11613/BM.2019.030501.
Rebrin I, Sohal RS. Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol. 2004;39(10):1513–9. https://doi.org/10.1016/j.exger.2004.08.014.
Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6(4):e19194. https://doi.org/10.1371/journal.pone.0019194.
Nakae D, Akai H, Kishida H, Kusuoka O, Tsutsumi M, Konishi Y. Age and organ dependent spontaneous generation of nuclear 8-hydroxydeoxyguanosine in male Fischer 344 rats. Lab Investig. 2000;80(2):249–61. https://doi.org/10.1038/labinvest.3780028.
Rizvi SI, Maurya PK. Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci. 2007;1100:373–82. https://doi.org/10.1196/annals.1395.041.
Powers RW, Majors AK, Lykins DL, Sims CJ, Lain KY, Roberts JM. Plasma homocysteine and malondialdehyde are correlated in an age- and gender-specific manner. Metabolism. 2002;51(11):1433–8. https://doi.org/10.1053/meta.2002.35587.
Yang W, Burkhardt B, Fischer L, Beirow M, Bork N, Wönne EC, et al. Age-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 2015;14:1273–90. https://doi.org/10.17179/excli2015-734.
Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157(4):882–96. https://doi.org/10.1016/j.cell.2014.03.026.
Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, et al. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction. 2019;158(2):169–79. https://doi.org/10.1530/REP-18-0574.
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. https://doi.org/10.1152/physrev.00018.2001.
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040.
Jacob KD, Noren HN, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev. 2013;134(3-4):139–57. https://doi.org/10.1016/j.mad.2013.02.008.
Yanagi S, Tsubouchi H, Miura A, Matsuo A, Matsumoto N, Nakazato M. The Impacts of Cellular Senescence in Elderly Pneumonia and in Age-Related Lung Diseases That Increase the Risk of Respiratory Infections. Int J Mol Sci. 2017;18(3):503. https://doi.org/10.3390/ijms18030503.
Wang X, Bonventre JV, Parrish AR. The aging kidney: increased susceptibility to nephrotoxicity. Int J Mol Sci. 2014;15(9):15358–76. https://doi.org/10.3390/ijms150915358.
Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123(Pt15):2533–42. https://doi.org/10.1242/jcs.070490.
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev. 2016;155:10–21. https://doi.org/10.1016/j.mad.2016.02.003.
Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol. 2015;63:21–4. https://doi.org/10.1016/j.biocel.2015.01.023.
Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci. 2001;56(11):475–82. https://doi.org/10.1093/gerona/56.11.b475.
Taglialatela G, Gegg M, Perez-Polo JR, Williams LR, Rose GM. Evidence for DNA fragmentation in the CNS of aged Fischer-344 rats. Neuroreport. 1996;7(5):977–80. https://doi.org/10.1097/00001756-199604100-00004.
Higami Y, Shimokawa I, Tomita M, Okimoto T, Koji T, Kobayashi N, et al. Aging accelerates but life-long dietary restriction suppresses apoptosis-related Fas expression on hepatocytes. Am J Pathol. 1997;151(3):659–63.
Adams CS, Horton WE Jr. Chondrocyte apoptosis increases with age in the articular cartilage of adult animals. Anat Rec. 1998;250(4):418–25. https://doi.org/10.1002/(SICI)1097-0185(199804)250:4<418::AID-AR4>3.0.CO;2-T.
Kapasi AA, Singhal PC. Aging splenocyte and thymocyte apoptosis is associated with enhanced expression of p53, bax, and caspase-3. Mol Cell Biol Res Commun. 1999;1(1):78–81. https://doi.org/10.1006/mcbr.1999.0106.
Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, et al. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med. 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001.
Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TMA. 2018;2:30–7. https://doi.org/10.1016/j.tma.2018.08.003.
Kang HT, Lee HI, Hwang ES. Nicotinamide extends replicative lifespan of human cells. Aging Cell. 2006;5(5):423–36. https://doi.org/10.1111/j.1474-9726.2006.00234.x.
Tong DL, Zhang DX, Xiang F, Teng M, Jiang XP, Hou JM, et al. Nicotinamide pretreatment protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology. 2012;90(1-2):11–8. https://doi.org/10.1159/000338628.
Paul C, Robaire B. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases. PLoS One. 2013;8(12):e84354. https://doi.org/10.1371/journal.pone.0084354.
Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22–33. https://doi.org/10.1016/j.arr.2014.10.007.
Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88(1):179–84. https://doi.org/10.1210/jc.2002-020408.
Neves BVD, Lorenzini F, Veronez D, Miranda EP, Neves GD, Fraga R. Numeric and volumetric changes in Leydig cells during aging of rats. Acta Cir Bras. 2017;32(10):807–15. https://doi.org/10.1590/s0102-865020170100000002.
Gunes S, Hekim GN, Arslan MA, Asci R. Effects of aging on the male reproductive system. J Assist Reprod Genet. 2016;33(4):441–54. https://doi.org/10.1007/s10815-016-0663-y.
Handelsman DJ. Aging in the hypothalamic-pituitary-testicular axis: Knobil and Neill’s Physiology of Reproduction, 3rd Ed. Elsevier; 2006. pp. 2697–2728.
Dakouane M, Bicchieray L, Bergere M, Albert M, Vialard F, Selva J. A histomorphometric and cytogenetic study of testis from men 29-102 years old. Fertil Steril. 2005;83(4):923–8. https://doi.org/10.1016/j.fertnstert.2004.12.005.
Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J Gerontol A Biol Sci Med Sci. 2019;74(6):860–71. https://doi.org/10.1093/gerona/gly082.
Pop OT, Cotoi CG, Plesea IE, Gherghiceanu M, Enache SD, Mandache E, et al. Histological and ultrastructural analysis of the seminiferous tubule wall in ageing testis. Romanian J Morphol Embryol. 2011;52(1 Suppl):241–8.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hacioglu, C., Kar, F. & Kanbak, G. Reproductive Effects of Nicotinamide on Testicular Function and Structure in Old Male Rats: Oxidative, Apoptotic, Hormonal, and Morphological Analyses. Reprod. Sci. 28, 3352–3360 (2021). https://doi.org/10.1007/s43032-021-00647-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43032-021-00647-7