[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Deep Learning-Based Classification of Alzheimer’s Disease Using MRI Scans: A Customized Convolutional Neural Network Approach

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Alzheimer's Disease (AD) is a complex condition impacting memory, cognition, and daily functions. Early diagnosis is crucial for effective management and treatment, although no cure currently exists. In this study, we develop and evaluate a custom Convolutional Neural Network (c-CNN) model for AD classification using MRI scans. Our c-CNN model, featuring a unique architecture with two convolution layers, one max pooling layer, seven sequential layers, two dropout layers, and one dense output layer, is tested on three distinct MRI datasets. The first dataset comprises 6400 images categorized into four classes: Mild Demented (MiD), Moderate Demented (MdD), Non-Demented (ND), and Very Mild Demented (VMD). The second dataset includes 1296 images representing five stages of AD from the AD Neuroimaging Initiative (ADNI) repository. The third dataset contains 5154 images across three classes: AD, Confidence Interval (CI), and cognitive normal (CN). We rigorously compare our c-CNN model against DenseNet-121 (D-121), InceptionV3 (IV3), and Resnet 50 (Res-50) on these datasets. Our model outperforms others in accuracy, precision, recall, F1-score, area under the curve (AUC), and validation loss. These results underscore the effectiveness of our c-CNN model, highlighting its potential as a valuable tool for accurate AD classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Algorithm 1
Fig. 14
Fig. 15
Algorithm 2
Fig. 16
Algorithm 3
Fig. 17
Algorithm 4
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of Data and Materials

The data that support the findings of this study are available on request from the repository https://adni.loni.usc.edu/data-samples/access-data/.

References

  1. Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X. Early detection of AD using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front Neurosci. 2020. https://doi.org/10.3389/fnins.2020.00259.

    Article  Google Scholar 

  2. Ulep MG, Saraon SK, McLea S. Alzheimer disease. J Nurse Practit. 2018;14:129–35.

    Article  Google Scholar 

  3. Christina P. World Alzheimer report 2018 – the state of the art of dementia research: new frontiers. London: AD International; 2018.

    Google Scholar 

  4. Bae JB, Lee S, Jung W, et al. Identification of AD using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci Rep. 2020;10:22252. https://doi.org/10.1038/s41598-020-79243-9.

    Article  Google Scholar 

  5. Hwang EJ, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2: e191095. https://doi.org/10.1001/jamanetworkopen.2019.1095.

    Article  Google Scholar 

  6. Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  Google Scholar 

  7. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8. https://doi.org/10.1038/nature21056.

    Article  Google Scholar 

  8. Li H, et al. A deep learning model for early prediction of AD dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement. 2019;15:1059–70. https://doi.org/10.1016/j.jalz.2019.02.007.

    Article  Google Scholar 

  9. Li F, Liu M. AD diagnosis based on multiple cluster dense convolutional networks. Comput Med Imaging Graph. 2018;70:101–10. https://doi.org/10.1016/j.compmedimag.2018.09.009.

    Article  Google Scholar 

  10. Luo S, Li X, Li J. Automatic AD recognition from MRI data using deep learning method. J Appl Math Phys. 2017;05:1892–8. https://doi.org/10.4236/jamp.2017.59159.

    Article  Google Scholar 

  11. Liu M, Zhang J, Adeli E, Shen D. Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal. 2018;43:157–68. https://doi.org/10.1016/j.media.2017.10.005.

    Article  Google Scholar 

  12. Basaia S, et al. Automated classification of AD and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin. 2019;21: 101645. https://doi.org/10.1016/j.nicl.2018.101645.

    Article  Google Scholar 

  13. Lu D, et al. Multimodal and multiscale deep neural networks for the early diagnosis of AD using structural MR and FDG-PET images. Sci Rep. 2018;8:5697. https://doi.org/10.1038/s41598-018-22871-z.

    Article  Google Scholar 

  14. Petersen RC, et al. AD neuroimaging initiative (ADNI): Clinical characterization. Neurology. 2010;74:201–9.

    Article  Google Scholar 

  15. Liu Y, et al. Education increases reserve against AD-evidence from structural MRI analysis. Neuroradiology. 2012;54:929–38. https://doi.org/10.1007/s00234-012-1005-0.

    Article  Google Scholar 

  16. AD Neuroimaging Initiative (ADNI). https://adni.loni.usc.edu/ (Accessed online 12–02–2021).

  17. Venugopalan J, Tong L, Hassanzadeh HR, et al. Multimodal deep learning models for early detection of AD stage. Sci Rep. 2021;11:3254. https://doi.org/10.1038/s41598-020-74399-w.

    Article  Google Scholar 

  18. Dyrba M, Hanzig M, Altenstein S, Bader S, Ballarini T, Brosseron F, Buerger K, Cantré D, Dechent P, Dobisch L, Düzel E, Ewers M, Fliessbach K, Glanz W, Haynes JD, Heneka MT, Janowitz D, Keles DB, Kilimann I, Laske C, Maier F, Metzger CD, Munk MH, Perneczky R, Peters O, Preis L, Priller J, Rauchmann B, Roy N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth EJ, Weber MA, Ertl-Wagner B, Wagner M, Wiltfang J, Jessen F, Teipel SJ, ADNI, AIBL, DELCODE study groups. Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in AD. Alzheimers Res Ther. 2021;13(1):191. https://doi.org/10.1186/s13195-021-00924-2.

    Article  Google Scholar 

  19. Helaly HA, Badawy M, Haikal AY. Deep learning approach for early detection of AD. Cogn Comput. 2021. https://doi.org/10.1007/s12559-021-09946-2.

    Article  Google Scholar 

  20. Odusami M, Maskeliūnas R, Damaševičius R, Krilavičius T. Analysis of features of AD: detection of early stage from functional brain changes in magnetic resonance images using a finetuned ResNet18 network. Diagnostics (Basel). 2021;11(6):1071. https://doi.org/10.3390/diagnostics11061071.

    Article  Google Scholar 

  21. Al-Khuzaie FEK, Bayat O, Duru AD. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Appl Bionics Biomech. 2021. https://doi.org/10.1155/2021/6690539.

    Article  Google Scholar 

  22. Yagis E, Citi L, Diciotti S, Marzi C, Workalemahu Atnafu S and Seco De Herrera AG. 3D convolutional neural networks for diagnosis of AD via structural MRI. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020;pp 65–70. https://doi.org/10.1109/CBMS49503.2020.00020.

  23. Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, Guo G, Xiao M, Du M, Qu X. The AD neuroimaging initiative convolutional neural networks-based MRI image analysis for the AD prediction from mild cognitive impairment. Front Neurosci. 2018. https://doi.org/10.3389/fnins.2018.00777.

    Article  Google Scholar 

  24. Islam J, Zhang Y. Brain MRI analysis for AD diagnosis using an ensemble system of deep convolutional neural networks. Brain Inf. 2018;5:2. https://doi.org/10.1186/s40708-018-0080-3.

    Article  Google Scholar 

  25. Ebrahimi A, Luo S, AD Neuroimaging Initiative. Convolutional neural networks for AD detection on MRI images. J Med Imaging (Bellingham). 2021;8(2): 024503. https://doi.org/10.1117/1.JMI.8.2.024503.

    Article  Google Scholar 

  26. Amini M, Pedram MM, Moradi A, Ouchani M. Diagnosis of AD severity with fMRI images using robust multitask feature extraction method and convolutional neural network (CNN). Comput Math Methods Med. 2021. https://doi.org/10.1155/2021/5514839.

    Article  Google Scholar 

  27. Gunawardena KANNP, Rajapakse RN and Kodikara ND. Applying convolutional neural networks for pre-detection of AD from structural MRI data. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2017; pp 1–7. https://doi.org/10.1109/M2VIP.2017.8211486.

  28. Huang G, Liu Z, Van Der Maaten L and Weinberger KQ. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; pp. 2261–9.https://doi.org/10.1109/CVPR.2017.243.

  29. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016; 770–778. https://doi.org/10.1109/CVPR.2016.90.

  30. Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; pp. 2818–26.https://doi.org/10.1109/CVPR.2016.308.

  31. Albawi S, Mohammed TA and Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), 2017; pp. 1–6.https://doi.org/10.1109/ICEngTechnol.2017.8308186.

Download references

Acknowledgements

This work was supported by Vision Group on science and technology (VGST), India with GRD number:880.

Funding

This work was funded by Vision Group on science and technology (VGST), India with GRD Number:880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aditya Shastry.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shastry, K.A. Deep Learning-Based Classification of Alzheimer’s Disease Using MRI Scans: A Customized Convolutional Neural Network Approach. SN COMPUT. SCI. 5, 917 (2024). https://doi.org/10.1007/s42979-024-03284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03284-4

Keywords

Navigation