[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A DNA Cryptosystem Using Diffie–Hellman Key Exchange

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

DNA cryptography is a method of concealing information in the form of DNA sequence. It is growing in popularity as a result of its quicker performance and low storage and power requirements. Despite its advantages, employing DNA cryptography purely is difficult due to a lack of secure theory and its easily implementable techniques. This paper presents a cutting-edge solution that uses bioinformatics and Diffie–Hellman Key exchange to protect the data during communications, overcoming the difficulties associated with employing solely DNA cryptography. Our cryptosystem suggests a method for encrypting and decrypting data that makes use of the entire Central Dogma of Molecular Biology (CDMB), the process by which DNA is converted into proteins. The Diffie–Hellman Key exchange approach is utilized for key generation in this algorithm, which also includes a few extra modifications for additional strength. Comparing our proposed bio-inspired cryptosystem to current systems, it demonstrates potential cryptographic efficiency, even on big data sets. In addition, it creates a very robust and quick-to-generate cryptosystem that protects the data from numerous online threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. . Katz J, Cryptography. 2004. doi: https://doi.org/10.1201/9781420057133

  2. Greene SS Security Program and Policies: Principles and Practices. 2014.

  3. Karuppiah M, Saravanan R. A secure remote user mutual authentication scheme using smart cards. J Inf Secur Appl. 2014;19(4–5):282–94. https://doi.org/10.1016/j.jisa.2014.09.006.

    Article  Google Scholar 

  4. Kumari S, Karuppiah M, Li X, Wu F, Das AK, Odelu V. An enhanced and secure trust-extended authentication mechanism for vehicular ad-hoc networks. Secur Commun Netw. 2016;9(17):4255–71. https://doi.org/10.1002/sec.1602.

    Article  Google Scholar 

  5. Saggese GP, Romano L, Mazzocca N, Mazzeo A. A tamper resistant hardware accelerator for RSA cryptographic applications. J Syst Archit. 2004;50(12):711–27. https://doi.org/10.1016/j.sysarc.2004.04.002.

    Article  Google Scholar 

  6. De Silva PY, Ganegoda GU. New trends of digital data storage in DNA. Biomed Res Int. 2016;2016:1–14. https://doi.org/10.1155/2016/8072463.

    Article  CAS  Google Scholar 

  7. Dove A. DNA cryptography. Nat Biotechnol. 1999;17(7):625–625. https://doi.org/10.1038/10813.

    Article  PubMed  Google Scholar 

  8. Jirwan N, Singh A “Techniques TECHNIQUES OF,” Int. J. Sci. Eng. Res., vol. 4, no. 3, pp. 1–6, 2013, [Online]. Available: http://www.ijser.org

  9. Simmons GJ. Symmetric and asymmetric encryption. ACM Comput Surv. 1979;11(4):305–30. https://doi.org/10.1145/356789.356793.

    Article  Google Scholar 

  10. Chang JP, Shasha DE. Storing clocked programs inside DNA: a simplifying framework for nanocomputing. Synth Lect Comput Sci. 2011;3(1):1–73. https://doi.org/10.2200/S00343ED1V01Y201103CSL004.

    Article  Google Scholar 

  11. Barman P. “An Efficient Hybrid Elliptic Curve Cryptography System with DNA Encoding,” Int. Res. J. Comput. Sci., no. May 2015, 2015, [Online]. Available: http://www.irjcs.com/volumes/vol2/iss5/07.MYJCS10100.pdf.

  12. Ning K. “A Pseudo DNA Cryptography Method,” Comput. Res. Repos. – CORR, 2009.

  13. Roy SS,. Shahriyar SA, Asaf-Uddowla M, Alam KMR, Morimoto Y, “A novel encryption model for text messages using delayed chaotic neural network and DNA cryptography,” in 2017 20th International Conference of Computer and Information Technology (ICCIT), 2017, pp. 1–6. doi: https://doi.org/10.1109/ICCITECHN.2017.8281796.

  14. Jogdand RM, Bisalapur SS. Design of an efficient neural key generation. Int J Artif Intell Appl. 2011;2(1):60–9. https://doi.org/10.5121/ijaia.2011.2105.

    Article  Google Scholar 

  15. Shihab K. A backpropagation neural network for computer network security. J Comput Sci. 2006;2(9):710–5. https://doi.org/10.3844/jcssp.2006.710.715.

    Article  Google Scholar 

  16. Kalsi S, Kaur H, Chang V. DNA cryptography and deep learning using genetic algorithm with NW algorithm for key generation. J Med Syst. 2018;42(1):17. https://doi.org/10.1007/s10916-017-0851-z.

    Article  Google Scholar 

  17. . Sajisha KS, Mathew S. “An encryption based on DNA cryptography and steganography,” in 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), 2017, pp. 162–167. doi: https://doi.org/10.1109/ICECA.2017.8212786.

  18. Pandey GP. Implementation of DNA cryptography in cloud computing and using huffman algorithm, socket programming and new approach to secure cloud data. SSRN Electron J. 2019. https://doi.org/10.2139/ssrn.3501494.

    Article  Google Scholar 

  19. Basu S, Karuppiah M, Nasipuri M, Halder AK, Radhakrishnan N. Bio-inspired cryptosystem with DNA cryptography and neural networks. J Syst Archit. 2019;94:24–31. https://doi.org/10.1016/j.sysarc.2019.02.005.

    Article  Google Scholar 

  20. Indrasena Reddy M, Siva Kumar AP, Subba Reddy K. A secured cryptographic system based on DNA and a hybrid key generation approach. Biosystems. 2020;197:104207. https://doi.org/10.1016/j.biosystems.2020.104207.

    Article  CAS  PubMed  Google Scholar 

  21. Geethanjali G, Ashwin C, Bharath VP, Avinash A, Hiremath A. “Enhanced Data Encryption in IOT using ECC Cryptography and LSB Steganography,” in 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C) 2021 (pp. 173–177). doi: https://doi.org/10.1109/ICDI3C53598.2021.00043.

  22. Singh P, Khari M, Vimal S. EESSMT: An energy efficient hybrid scheme for securing mobile Ad hoc networks using IoT. Wirel Pers Commun. 2022;126(3):2149–73. https://doi.org/10.1007/s11277-021-08764-x.

    Article  Google Scholar 

  23. Singh P, Khari M, Kaundanya NS. Impact of group theory in cryptosystem. In: Ahmad KAB, Ahmad K, Dulhare UN, editors. Functional encryption. Cham: Springer International Publishing; 2021. p. 19–36. https://doi.org/10.1007/978-3-030-60890-3_2.

    Chapter  Google Scholar 

  24. Devi PB, Ravindra P, Kumar RK. “Hiding information in an image using DNA cryptography. Elsevier; 2023. p. 173–210.

    Google Scholar 

  25. Shivaramakrishna D, Nagaratna M. A novel hybrid cryptographic framework for secure data storage in cloud computing: Integrating AES-OTP and RSA with adaptive key management and Time-Limited access control. Alexandria Eng J. 2023;84:275–84. https://doi.org/10.1016/j.aej.2023.10.054.

    Article  Google Scholar 

  26. Gadde S, Amutharaj J, Usha S. A security model to protect the isolation of medical data in the cloud using hybrid cryptography. J Inf Secur Appl. 2023;73: 103412. https://doi.org/10.1016/j.jisa.2022.103412.

    Article  Google Scholar 

  27. Goyal SB, Ravi RV, Verma C, Raboaca MS, Enescu FM. A lightweight cryptographic algorithm for underwater acoustic networks. Procedia Comput Sci. 2022;215:266–73. https://doi.org/10.1016/j.procs.2022.12.029.

    Article  Google Scholar 

  28. Murtaza MH, Tahir H, Tahir S, Alizai ZA, Riaz Q, Hussain M. A portable hardware security module and cryptographic key generator. J Inf Secur Appl. 2022;70: 103332. https://doi.org/10.1016/j.jisa.2022.103332.

    Article  Google Scholar 

  29. Morange M. The central dogma of molecular biology. Resonance. 2009;14(3):236–47. https://doi.org/10.1007/s12045-009-0024-6.

    Article  CAS  Google Scholar 

  30. Pavithran P, Mathew S, Namasudra S, Lorenz P. A novel cryptosystem based on DNA cryptography and randomly generated mealy machine. Comput Secur. 2021;104: 102160. https://doi.org/10.1016/j.cose.2020.102160.

    Article  Google Scholar 

  31. Miller WB, Baluška F, Reber AS. A revised central dogma for the 21st century: All biology is cognitive information processing. Prog Biophys Mol Biol. 2023;182:34–48. https://doi.org/10.1016/j.pbiomolbio.2023.05.005.

    Article  PubMed  Google Scholar 

  32. Huffman D. A method for the construction of minimum-redundancy codes. Proc IRE. 1952;40(9):1098–101. https://doi.org/10.1109/JRPROC.1952.273898.

    Article  Google Scholar 

  33. Sayood K. Huffman coding. In: Introduction to data compression. UK: Elsevier; 2006. p. 41–80. https://doi.org/10.1016/B978-012620862-7/50003-1.

    Chapter  Google Scholar 

  34. Arshad R, Saleem A, Khan D “Performance comparison of Huffman Coding and Double Huffman Coding,” in 2016 Sixth International Conference on Innovative Computing Technology (INTECH), 2016, pp. 361–364. https://doi.org/10.1109/INTECH.2016.7845058.

  35. Ya-Jun He, Duo-Li Zhang, Bin Shen, and Luo-Feng Geng, “Implementation of fast Huffman decoding algorithm,” In: 2007 7th International Conference on ASIC, 2007, pp. 770–773. doi: https://doi.org/10.1109/ICASIC.2007.4415744.

  36. U. Maurer and S. Wolf, “Diffie-Hellman, decision Diffie-Hellman, and discrete logarithms,” In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252), p. 327. doi: https://doi.org/10.1109/ISIT.1998.708932.

  37. Kumar M, Iqbal A, Kumar P. A new RGB image encryption algorithm based on DNA encoding and elliptic curve Diffie-Hellman cryptography. Signal Process. 2016;125:187–202. https://doi.org/10.1016/j.sigpro.2016.01.017.

    Article  Google Scholar 

  38. Jose A, Subramaniam K. WITHDRAWN: DNA based SHA512-ECC cryptography and CM-CSA based steganography for data security. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.09.790.

    Article  Google Scholar 

  39. Nan Li, “Research on Diffie-Hellman key exchange protocol,” In: 2010 2nd International Conference on Computer Engineering and Technology, 2010, pp. V4–634-V4–637. doi: https://doi.org/10.1109/ICCET.2010.5485276.

  40. Cock PJA, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3. https://doi.org/10.1093/bioinformatics/btp163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manohar Naik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaishali, R., Manohar Naik, S. A DNA Cryptosystem Using Diffie–Hellman Key Exchange. SN COMPUT. SCI. 5, 274 (2024). https://doi.org/10.1007/s42979-024-02607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02607-9

Keywords

Navigation