Abstract
When working with algorithms on quantum devices, quantum memory becomes a crucial bottleneck due to low qubit count in NISQ-era devices. In this context, the concept of ‘divide and compute’, wherein a quantum circuit is broken into several subcircuits and executed separately, while stitching the results of the circuits via classical post-processing, becomes a viable option, especially in NISQ-era devices. This paper introduces Qurzon, a proposed novel quantum compiler that incorporates the marriage of techniques of divide and compute with the state-of-the-art algorithms of optimal qubit placement for executing on real quantum devices. A scheduling algorithm is also introduced within the compiler that can explore the power of distributed quantum computing while paving the way for quantum parallelism for large algorithms. Several benchmark circuits have been executed using the compiler, thereby demonstrating the power of the divide and compute when working with real NISQ-era quantum devices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
Code availability
References
Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary edition. 10th ed. USA: Cambridge University Press; 2011.
Preskill J. Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Steane A. Quantum computing. Rep Progress Phys. 1998;61(2):117.
Williams C.P. Explorations in Quantum Computing. Springer, ??? (2010)
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549(7671):195–202.
Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary Phys. 2015;56(2):172–85.
Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NP, et al. Quantum chemistry in the age of quantum computing. Chem Rev. 2019;119(19):10856–915.
Dasgupta S, Humble TS. Characterizing the stability of nisq devices. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 419–429 (2020). IEEE
Cowtan A, Dilkes S, Duncan R, Krajenbrink A, Simmons W, Sivarajah S. On the qubit routing problem. arXiv preprint arXiv:1902.08091 (2019)
Ferrari D, Cacciapuoti AS, Amoretti M, Caleffi M. Compiler design for distributed quantum computing. IEEE Trans Quantum Eng. 2021;2:1–20. https://doi.org/10.1109/tqe.2021.3053921.
Ferrari D, Nasturzio S, Amoretti M. A software tool for mapping and executing distributed quantum computations on a network simulator
Cuomo D, Caleffi M, Cacciapuoti AS. Towards a distributed quantum computing ecosystem. IET Quantum Commun. 2020;1(1):3–8. https://doi.org/10.1049/iet-qtc.2020.0002.
Gyongyosi L, Imre S. Distributed quantum computation for near-term quantum environments. In: Quantum Information Science, Sensing, and Computation XIII, vol. 11726, p. 117260 (2021). International Society for Optics and Photonics
Preskill J. Fault-tolerant quantum computation. In: Introduction to Quantum Computation and Information, pp. 213–269. World Scientific, ??? (1998)
Shor PW. Fault-tolerant quantum computation. In: Proceedings of 37th conference on foundations of computer science, pp. 56–65 (1996). IEEE
Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput. 1997;26(5):1484–509. https://doi.org/10.1137/s0097539795293172.
Harrow AW, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett. 103(15) (2009). https://doi.org/10.1103/physrevlett.103.150502
et. al., X.M.: Observation of time-crystalline eigenstate order on a quantum processor (2021)
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10.
Harrow AW, Montanaro A. Quantum computational supremacy. Nature. 2017;549(7671):203–9.
Bremner MJ, Montanaro A, Shepherd DJ. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum. 2017;1:8.
Yetis H, Karakoes M. Investigation of noise effects for different quantum computing architectures in ibm-q at nisq level. In: 2021 25th International Conference on Information Technology (IT), pp. 1–4 (2021). https://doi.org/10.1109/IT51528.2021.9390130
Experience, IQ. IBM. https://quantum-computing.ibm.com/
Saleem ZH, Tomesh T, Perlin MA, Gokhale P, Suchara M. Quantum divide and conquer for combinatorial optimization and distributed computing (2021)
Cuomo D, Caleffi M, Krsulich K, Tramonto F, Agliardi G, Prati E, Cacciapuoti AS. Optimized compiler for distributed quantum computing. arXiv (2021). arXiv:2112.14139
Preskill, J. Ph219/CS219 Quantum computation 2018-19 (2015)
Tang W, Tomesh T, Suchara M, Larson J, Martonosi M. CutQC: Using small quantum computers for large quantum circuit evaluations. In: Proceedings of the 26th ACM International conference on architectural support for programming languages and operating systems, pp. 473–486 (2021)
Peng T, Harrow AW, Ozols M, Wu X. Simulating large quantum circuits on a small quantum computer. Phys Rev Lett. 2020;125(15): 150504.
Ayral T, Régent F-ML, Saleem Z, Alexeev Y, Suchara M. Quantum divide and compute: Exploring the effect of different noise sources. SN Comput Sci. 2(3) (2021). https://doi.org/10.1007/s42979-021-00508-9
Tyagi R, Gupta SK. A survey on scheduling algorithms for parallel and distributed systems. In: Mishra A, Basu A, Tyagi V, editors. Silicon photonics & high performance computing. Singapore: Springer; 2018. p. 51–64.
Siraichi MY, Santos VFd, Collange S, Pereira FMQ. Qubit allocation. In: Proceedings of the 2018 international symposium on code generation and optimization, pp. 113–125 (2018)
Zulehner A, Paler A, Wille R. An efficient methodology for mapping quantum circuits to the ibm qx architectures. IEEE Trans Comput-Aided Design Integrated Circ Syst. 2018;38(7):1226–36.
Wille R, Burgholzer L, Zulehner A. Mapping quantum circuits to ibm qx architectures using the minimal number of swap and h operations. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2019). IEEE
Nash B, Gheorghiu V, Mosca M. Quantum circuit optimizations for nisq architectures. Quantum Sci Technol. 2020;5(2): 025010.
Tan B, Cong J. Optimal layout synthesis for quantum computing. In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2020). IEEE
Cowtan A, Simmons W, Duncan R. A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz (2020)
Cowtan A, Dilkes S, Duncan R, Simmons W, Sivarajah S. Phase gadget synthesis for shallow circuits. Electron Proc Theoretical Comput Sci. 2020;318:213–28. https://doi.org/10.4204/eptcs.318.13.
et. al., M.S.A.: Qiskit: An Open-source Framework for Quantum Computing (2021). https://doi.org/10.5281/zenodo.2573505
Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput. 1997;26(5):1411–73. https://doi.org/10.1137/S0097539796300921.
Perlin MA, Saleem ZH, Suchara M, Osborn JC. Quantum Circuit Cutting with Maximum Likelihood Tomography (2021)
...Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus JY, O’Malley PJJ, Quintana CM, Sank D, Vainsencher A, Wenner J, White TC, Geller MR, Cleland AN, Martinis JM. Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett. 2014;113: 220502. https://doi.org/10.1103/PhysRevLett.113.220502.
Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell DL, Orlando TP, Gustavsson S, Oliver WD. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys Rev Appl. 2018;10: 054062. https://doi.org/10.1103/PhysRevApplied.10.054062.
Mundada P, Zhang G, Hazard T, Houck A. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys Rev Appl. 2019;12: 054023. https://doi.org/10.1103/PhysRevApplied.12.054023.
Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L. Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit. Phys Rev Appl. 2020;14: 024070. https://doi.org/10.1103/PhysRevApplied.14.024070.
Han XY, Cai TQ, Li XG, Wu YK, Ma YW, Ma YL, Wang JH, Zhang HY, Song YP, Duan LM. Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit. Phys Rev A. 2020;102: 022619. https://doi.org/10.1103/PhysRevA.102.022619.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Not applicable.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the topical collection “Quantum Computing: Circuits Systems Automation and Applications” guest edited by Himanshu Thapliyal and Travis S. Humble.
Rights and permissions
About this article
Cite this article
Chatterjee, T., Das, A., Mohtashim, S.I. et al. Qurzon: A Prototype for a Divide and Conquer-Based Quantum Compiler for Distributed Quantum Systems. SN COMPUT. SCI. 3, 323 (2022). https://doi.org/10.1007/s42979-022-01207-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-022-01207-9