Abstract
Animal venom peptides have been reported as potential antimicrobial molecules for the development of novel antibiotics against resistant bacteria. Recent studies indicate that ant venoms is an important source of novel antimicrobial peptides. In the present study, the antimicrobial activity of the venom of the predatory ant Pachycondyla striata Smith, 1858, was evaluated against some pathogenic bacteria of medical importance. Growth inhibition tests revealed that the venom has broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. Mass spectrometry analysis of the fractions with antimicrobial activity allowed the identification of venom allergen and venom allergen 5 as well as a peptide of unknown sequence. These three compounds exhibited antibacterial activity against the tested human pathogens.
Similar content being viewed by others
References
Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM (2014) Diversity of peptide toxins from stinging ant venoms. Toxicon 92:166–178. https://doi.org/10.1016/j.toxicon.2014.10.021
Antweb (2018) www.antweb.org. Accessed 1 Feb 2018
Arbiser JL, Kau T, Konar M, Narra K, Ramchandran R, Summers SA, Vlaho CJ, Ye K, Perry BN, Matter W, Fischl A, Cook J, Silver PA, Bain J, Cohen P, Whitmire D, Furness S, Govindarajan B, Bowen JP (2007) Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 109:560–565. https://doi.org/10.1182/blood-2006-06-029934
Cardoso FC, Pacífico LG, Carvalho DC, Victória JM, Neves AL, Chávez-Olórtegui C, Gomez MV, Kalapothakis E (2003) Molecular cloning and characterization of Phoneutria nigriventer toxins active on calcium channels. Toxicon 41:755–763. https://doi.org/10.1016/S0041-0101(03)00011-4
Carvalho FF, Nencioni ALA, Lebrun I, Dorce VAC, Sandoval MRL (2000) Convulsive effects of some isolated venom fractions of the Tityus serrulatus scorpion: behavioral, electroencephalographic, and neuropathological aspects. J Venom Anim Toxins 6:238–260. https://doi.org/10.1590/S0104-79302000000200008
Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003. https://doi.org/10.1016/j.peptides.2008.02.007
Čeřovský V, Budesínský M, Hovorka O, Cvacka J, Voburka Z, Slaninová J, Borovicková L, Fucík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera : Halictidae). ChemBioChem 10:2089–2099. https://doi.org/10.1002/cbic.200900133
Chapman RF (2013) The insects structure and function, 5th edn. Cambridge University Press, Cambridge
Cologna CT, Cardoso JS, Jourdan E, Degueldre M, Upert G, Gilles N, Uetanabaro AP, Costa-Neto EM, Thonart P, Pauw E, Quinton L (2013) Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 94:413–422. https://doi.org/10.1016/j.jprot.2013.10.017
Dkhil MA, Adbel-Baki AS, AI-Quraishi S, AI-Khalifa M (2010) Anti-inflammatory activity of the venom from samsum ants Pachycondyla sennaarensis. Afr J Pharm Pharmacol 4:115–118
Guzman J, Téné N, Touchard A, Castilho D, Belkhelfa H, Haddioiu-Hbabi L, Treilhou M, Sauvain M (2018) Anti-Helicobacter pylori properties of the ant-venom peptide bicarinalin. Toxins 10:1–10. https://doi.org/10.3390/toxins10010021
Heinen TE, Veiga AB (2011) Arthropod venoms and cancer. Toxicon 57:497–511. https://doi.org/10.1016/j.toxicon.2011.01.002
Hölldobler B, Wilson EO (1990) The ants. Springer-Verlag, Berlin
Inagaki H, Akagi M, Imai HT, Taylos RW, Kubo T (2004) Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia. Arch Biochem Biophys 428:170–178. https://doi.org/10.1016/j.abb.2004.05.013
Johnson SR, Copello JA, Evans MS, Suarez AV (2010) A biochemical characterization of the major peptides from the venom of the giant Neotropical hunting ant Dinoponera australis. Toxicon 55:702–710. https://doi.org/10.1016/j.toxicon.2009.10.021
Jouvenaz DP, Blum MS, MacConnell JG (1972) Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob Agents Chemother 2:291–293
Konno K, Hisada M, Fontana R, Lorenzi CCB, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Ruggiero-Neto J, Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 26:70–80. https://doi.org/10.1016/S0167-4838(01)00271-0
Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nature Rev Drugs Disc 2:790–802. https://doi.org/10.1038/nrd1197
Lima PR, Brochetto-Braga MR (2003) Hymenoptera venom review focusing on Apis mellifera. J Venom Anim Toxins incl Trop Dis 9:148–162. https://doi.org/10.1590/S1678-91992003000200002
Lima DB, Torres AF, Mello CP, Menezes RR, Sampaio TL, Canuto JA, Silva JJ, Freire VN, Quinet YP, Havt A, Monteiro HS, Nogueira NA, Martins AM (2014) Antimicrobial effect of Dinoponera quadriceps (Hymenoptera : Formicidae) venom against Staphylococcus aureus strains. J Appl Microbiol 117:390–396. https://doi.org/10.1111/jam.12548
Lima DB, Sousa PL, Torres AFC, Rodrigues KAF, Mello CP, Menezes RRPPB, Tessarolo LD, Quinet YP, Oliveira MR, Martins AMC (2016) Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120:128–132. https://doi.org/10.1016/j.toxicon.2016.08.008
Lima DB, Mello CP, Bandeira ICJ, Menezes RRPPB, Sampaio TL, Falção CB, Morlighem JRL, Rádis-Baptista G, Martins AMC (2018) The dinoponeratoxin petides from the gigant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biol Chem 399:187–196. https://doi.org/10.1515/hsz-2017-0198
Liu X, Chen D, Xie L, Zhang R (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54:1083–1089. https://doi.org/10.1211/002235702320266235
Vandermeer RK, Morel L (1995) Ant queens deposit pheromones and antimicrobial agents on eggs. Naturwiss 82:93–95. https://doi.org/10.1007/BF01140150
Nôga DA, Brandão LE, Cagni FC, Silva D, Azevedo DL, Araújo A, Santos WF, Miranda A, Silva RH, Ribeiro AM (2016) Anticonvulsant effects of fractions isolated from Dinoponera quadriceps (Kempt) ant venom (Formicidae: Ponerinae). Toxins 23:1–13. https://doi.org/10.3390/toxins9010005
Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J (2001) Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 276:17823–17829. https://doi.org/10.1074/jbc.M100216200
Ortiz G, Camargo-Mathias MI (2006) Venom gland of Pachycondyla striata worker ants (Hymenoptera: Ponerinae). Ultrastructural characterization. Micron 37:243–248. https://doi.org/10.1016/j.micron.2005.10.008
Ownby CL, Powell JR, Jiang MS, Fletcher JE (1997) Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon 35:67–80. https://doi.org/10.1016/S0041-0101(96)00078-5
Pessoa WFB, Silva LCC, Dias LDO, Delabie JHC, Costa H, Romano CC (2016) Analysis of protein composition and bioactivity of Neoponera villosa venom (Hymenoptera : Formicidae). Int J Mol Sci 17:513–533. https://doi.org/10.3390/ijms17040513
Pinto JRS, Fox EG, Saidemberg DM, Santos LD, Menegasso ARS, Costa-Manso E, Machado EA, Bueno OC, Palma MS (2012) Proteomic view of the venom from the fire ant Solenopsis invicta Buren. J Proteome Res 11:4643–4653. https://doi.org/10.1021/pr300451g
Pluzhnikov KA, Kozlov SA, Vassilevski AA, Vorontsova OV, Feofanov AV, Grishin EV (2014) Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimie 107:211–215. https://doi.org/10.1016/j.biochi.2014.09.012
Quinet Y, Vieira RHSF, Sousa MR, Evangelista-Barreto NS, Carvalho FCT, Guedes MIF, Alves CR, de Biseau JC, Heredia A (2012) Antibacterial properties of contact defensive secretions in Neotropical Crematogaster ants. J Venom Anim Toxins incl Trop Dis 18:441–445. https://doi.org/10.1590/S1678-91992012000400013
Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antim Agen 24:536–547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
Rifflet A, Gavalda S, Téné N, Orivel J, Leprince J, Guilhaudis L, Génin E, Vétillard A, Treilhou M (2012) Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides 38:363–370. https://doi.org/10.1016/j.peptides.2012.08.018
Santos LD, Pieroni M, Menegasso ARS, Pinto JRAS, Palma MS (2011) A new scenario of bioprospecting of Hymenoptera venoms through proteomic approach. J Venom Anim Toxins incl Trop Dis 17:364–377. https://doi.org/10.1590/S1678-91992011000400003
Santos PP, Games PD, Azevedo DO, Barros E, Oliveira LL, Ramos HJO, Baracat-Pereira MC, Serrão JE (2017) Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera : Formicidae). Arch Ins Biochem Physiol 96:1–17. https://doi.org/10.1002/arch.21424
Silva MF, Mota CM, Miranda VS, Cunha AO, Silva MC, Naves KS, Oliveira F, Silva DA, Mineo TW, Santiago FM (2015) Biological and enzymatic characterization of proteases from crude venom of the ant Odontomachus bauri. Toxins 7:5114–5128. https://doi.org/10.3390/toxins7124869
Silva-Melo A, Giannotti E (2012) Division of labor in Pachycondyla striata Fr. Smith, 1858 (Hymenoptera : Formicidae : Ponerinae). Psyche 2012:1–7. https://doi.org/10.1155/2012/153862
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
Szolajska E, Poznanski J, Feber ML, Michalik J, Gout E, Fender P, Bailly I, Dublet B, Chroboczek J (2004) Poneratoxin, a neurotoxin from ant venom structure and expression in insect cells and construction of a bio-insecticide. Eur J Biochem 271:2127–2136. https://doi.org/10.1111/j.1432-1033.2004.04128.x
Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M (2016) Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides 79:103–113. https://doi.org/10.1016/j.peptides.2016.04.001
Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A (2016) The biochemical toxin arsenal from ant venoms. Toxins 8:1–28. https://doi.org/10.3390/toxins8010030
Tseng TS, Tsai KC, Chen C (2017) Characterizing the structure-function relationship reveals the mode of action of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula. Mol BioSys 13:1193–1201. https://doi.org/10.1039/c6mb00810k
Uniprot (2018) http://www.uniprot.org/. Accessed 13 Mar 2018
Wang KR, Zhang BZ, Zhang W, Yan JX, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure – activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29:963–968. https://doi.org/10.1016/j.peptides.2008.01.015
Yan Y, An Y, Wang X, Chen Y, Jacob MR, Tekwani BL, Dai L, Li XC (2017) Synthesis and antimicrobial evaluation of fire ant venom alkaloid based 2-methyl-6-alkyl-Δ1,6-piperideines. J Nat Prod 80:2795–2798. https://doi.org/10.1021/acs.jnatprod.7b00625
Zelezetsky I, Pag U, Antcheva N, Sahl HG, Tossi A (2005) Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch Biochem Biophys 434:358–364. https://doi.org/10.1016/j.abb.2004.11.006
Acknowledgments
The authors are grateful to Dr. Jacques Charles Hubert Delabie for identifying the species P. striata, to Mr. Manoel José Ferreira for providing assistance during field collections, to the Núcleo de Biomoléculas (Universidade Federal de Viçosa) for providing technical support to this research.
Availability of data and materials
All data generated or analysed during this study are included in this published article.
Funding
This research was supported by Brazilian research agencies CNPq, FAPEMIG, CAPES and FINEP.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Santos, P.P., Pereira, G.R., Barros, E. et al. Antibacterial activity of the venom of the Ponerine ant Pachycondyla striata (Formicidae: Ponerinae). Int J Trop Insect Sci 40, 393–402 (2020). https://doi.org/10.1007/s42690-019-00090-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42690-019-00090-x