[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Bivariate Chen Distribution Based on Copula Function: Properties and Application of Diabetic Nephropathy

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

The purpose of this paper is to create a new bivariate model with more efficiency than the traditional models which discuss the effect of serum creatinine given the duration of diabetes. Based on FGM copula function and Chen distribution, we will introduce the bivariate FGM Chen distribution. Marginal distributions, product moments, and moment generating functions are studied as some of their statistical properties. Some dependency tests, such as Kendall’s tau, Pearson’s correlation, and regression model, are discussed. To estimate the model parameters, maximum likelihood and Bayesian estimation are used. In addition, for the parameter model, asymptotic confidence intervals and credible intervals of the highest posterior density for the Bayesian are calculated. A Monte Carlo simulation analysis is carried out of the maximum likelihood and Bayesian estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flores AQ (2009) Testing Copula functions as a method to derive bivariate weibull distributions. APSA 2009 Toronto meeting paper. Available at SSRN: https://ssrn.com/abstract=1450064

  2. Verrill SP, Evans JW, Kretschmann DE, Hatfield CA (2015) Asymptotically efficient estimation of a bivariate Gaussian–Weibull distribution and an introduction to the associated pseudo-truncated Weibull. Commun Stat Theory Methods 44(14):2957–2975

    Article  MathSciNet  Google Scholar 

  3. El-Sherpieny ES, Almetwally EM (2019) Bivariate generalized rayleigh distribution based on Clayton Copula. In: Proceedings of the annual conference on statistics (54rd), Computer Science and Operation Research, Faculty of Graduate Studies for Statistical Research, Cairo University, (pp 1–19

  4. Almetwally EM, Muhammed HZ (2020) On a bivariate Fréchet distribution. J Stat Appl Probab 9(1):1–21

    Article  Google Scholar 

  5. Almetwally EM, Muhammed HZ, El-Sherpieny ESA (2020) Bivariate Weibull distribution: properties and different methods of estimation. Ann Data Sci 7(1):163–193

    Article  Google Scholar 

  6. Samanthi RGM, Sepanski J (2020) On bivariate Kumaraswamy-distorted copulas. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2020.1777303

    Article  MATH  Google Scholar 

  7. Muhammed HZ (2016) Bivariate inverse Weibull distribution. J Stat Comput Simul 86(12):2335–2345

    Article  MathSciNet  Google Scholar 

  8. El-Morshedy M, Alhussain ZA, Atta D, Almetwally EM, Eliwa MS (2020) Bivariate Burr X generator of distributions: properties and estimation methods with applications to complete and type-II censored samples. Mathematics 8(2):1–31

    Article  Google Scholar 

  9. El-Gohary A, El-Morshedy M (2016) Bivariate exponentiated modified Weibull extension. J Stat Appl Probab 5(1):67–78

    Article  Google Scholar 

  10. Eliwa MS, El-Morshedy M (2020) Bivariate odd Weibull-G family of distributions: properties, Bayesian and non-Bayesian estimation with bootstrap confidence intervals and application. J Taibah Univ Sci 14(1):331–345

    Article  Google Scholar 

  11. Muhammed HZ (2020) On a bivariate generalized inverted Kumaraswamy distribution. Physica A 553:124281

    Article  MathSciNet  Google Scholar 

  12. Alotaibi RM, Rezk HR, Ghosh I, Dey S (2021) Bivariate exponentiated half logistic distribution: properties and application. Commun Stat Theory Methods 50(24):6099–6121

    Article  MathSciNet  Google Scholar 

  13. El-Sherpieny ESA, Muhammed HZ, Almetwally EM (2022) Bivariate Weibull-G family based on copula function: properties, Bayesian and non-Bayesian estimation and applications. Stat Optim Inf Comput. 10(3):678–709. https://doi.org/10.19139/soic-2310-5070-1129

  14. El-Sherpieny ESA, Almetwally EM, Muhammed HZ (2021) Bayesian and non-bayesian estimation for the parameter of bivariate generalized Rayleigh distribution based on clayton copula under progressive type-II censoring with random removal. Sankhya A. https://doi.org/10.1007/s13171-021-00254-3

    Article  Google Scholar 

  15. Nelsen RB (2007) An introduction to copulas. Springer

  16. Sklar A (1973) Random variables, joint distribution functions, and copulas. Kybernetika 9(6):449–460

    MathSciNet  MATH  Google Scholar 

  17. Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707

    Article  MathSciNet  Google Scholar 

  18. Almetwally EM (2019) Parameter estimation of bivariate models under some censoring schemes. Cairo University, Giza

    Google Scholar 

  19. Chen Z (2000) A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat Probab Lett 49(2):155–161

    Article  MathSciNet  Google Scholar 

  20. Almarashi AM, Elgarhy M, Jamal F, Chesneau C (2020) The exponentiated truncated inverse Weibull-generated family of distributions with applications. Symmetry 12(4):650

    Article  Google Scholar 

  21. Eghwerido JT, Ikwuoche JD, Adubisi OD (2020) Inverse odd Weibull generated family of distribution. Pak J Stat Oper Res 16(3):617–633

    Article  Google Scholar 

  22. Elgarhy M (2019) On the exponentiated Weibull Rayleigh distribution. Gazi Univ J Sci 32(3):1060–1081

    Article  MathSciNet  Google Scholar 

  23. Muhammed HZ, El-Sherpieny ESA, Almetwally EM (2021) Dependency measures for new bivariate models based on Copula function. Inf Sci Lett 10(3):511–526

    Google Scholar 

  24. Fredricks GA, Nelsen RB (2007) On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. J Stat Plann Inference 137(7):2143–2150

    Article  MathSciNet  Google Scholar 

  25. Sungur EA (2005) Some observations on copula regression functions. Commun Stat Theory Methods 34(9–10):1967–1978

    Article  MathSciNet  Google Scholar 

  26. Hyun S, Lee J, Kim JM, Jun C (2019) What coins lead in the cryptocurrency market: using Copula and neural networks models. J Risk Financ Manag 12(3):132

    Article  Google Scholar 

  27. Suzuki AK, Louzada-Neto F, Cancho VG, Barriga GD (2011) The FGM bivariate lifetime copula model: a bayesian approach. Adv Appl Stat 21(1):55–76

    MathSciNet  MATH  Google Scholar 

  28. Louzada F, Suzuki AK, Cancho VG (2013) The FGM long-term bivariate survival copula model: modeling, Bayesian estimation, and case influence diagnostics. Commun Stat Theory Methods 42(4):673–691

    Article  MathSciNet  Google Scholar 

  29. Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92

    MathSciNet  Google Scholar 

  30. Zimmerman DL (1993) A bivariate Cramér-von Mises type of test for spatial randomness. J Roy Stat Soc Ser C (Appl Stat) 42(1):43–54

    MATH  Google Scholar 

  31. Justel A, Peña D, Zamar R (1997) A multivariate Kolmogorov–Smirnov test of goodness of fit. Stat Probab Lett 35(3):251–259

    Article  MathSciNet  Google Scholar 

  32. Genest C, Huang W, Dufour JM (2013) A regularized goodness-of-fit test for copulas. Journal de la Société françSaise de statistique 154(1):64–77

    MathSciNet  MATH  Google Scholar 

  33. Langrené N, Warin X (2021) Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. Comput Stat Data Anal 162:107267

    Article  MathSciNet  Google Scholar 

  34. Genest C, Quessy JF, Rémillard B (2006) Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Stat 33(2):337–366

    Article  MathSciNet  Google Scholar 

  35. Grover G, Sabharwal A, Mittal J (2014) Application of multivariate and bivariate normal distributions to estimate duration of diabetes. Int J Stat Appl 4(1):46–57

    Google Scholar 

  36. Kotz S, Balakrishnan N, Johnson NL (2004) Continuous multivariate distributions. Models and applications, vol 1. Wiley

  37. Abd Elaal MK, Jarwan RS (2017) Inference of bivariate generalized exponential distribution based on copula functions. Appl Math Sci 11(24):1155–1186

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the editor. We also thank anonymous for their encouragement and support. The authors are grateful to anyone who reviewed the paper carefully and for their helpful comments that improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab M. Almetwally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sherpieny, ES.A., Muhammed, H.Z. & Almetwally, E.M. Bivariate Chen Distribution Based on Copula Function: Properties and Application of Diabetic Nephropathy. J Stat Theory Pract 16, 54 (2022). https://doi.org/10.1007/s42519-022-00275-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-022-00275-7

Keywords

Navigation