[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multi-level quantum inspired metaheuristics for automatic clustering of hyperspectral images

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Hyperspectral images contain large spectral information with an abundance of redundancy and a curse of dimensionality. Due to the absence of prior knowledge or availability of ground-truth data, clustering of these images becomes a herculean task. Hence, unsupervised cluster detection methods are more beneficial for utilising hyperspectral images in real-life scenarios. In this paper, six multilevel quantum inspired metaheuristics are proposed viz., Qubit Genetic Algorithm, Qutrit Genetic Algorithm, Qubit Multi-exemplar Particle Swarm Optimization Algorithm, Qutrit Multi-exemplar Particle Swarm Optimization Algorithm, Qubit Artificial Humming Bird Algorithm, and Qutrit Artificial Humming Bird Algorithm, for determining the optimal number of clusters in hyperspectral images automatically. Binary and ternary quantum versions of the algorithms are developed to enhance their exploration and exploitation capabilities. Simple algorithms for implementing quantum rotation gates are developed to bring diversity in the population without resorting to look-up tables. One of the main features of quantum gates is that they are reversible in nature. This property has been utilized for implementing quantum disaster operations. The application of a dynamic number of exemplars also enhances the performance of the Multi-exemplar Particle Swarm Optimization Algorithm. The six proposed algorithms are compared to the classical Genetic Algorithm, Multi-exemplar Particle Swarm Optimization Algorithm, and Artificial Humming Bird Algorithm. All the nine algorithms are applied on three hyperspectral image datasets viz., Pavia University, Indian Pines, and Xuzhou HYSPEX datasets. Statistical tests like mean, standard deviation, Kruskal Wallis test, and Tukey’s Post Hoc test are performed on all the nine algorithms to establish their efficiencies. Three cluster validity indices viz., Xie-Beni Index, Object-based Validation with densities, and Correlation Based Cluster Validity Index are used as the fitness function. The F, F’, and Q scores are used to compare the clustered images. The proposed algorithms are found to perform better in most of the cases when compared to their classical counterparts. It is also observed that the qutrit versions of the algorithms are found to converge faster. They also provide the optimal number of clusters almost equivalent to the number of classes identified in the ground-truth image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Code and Data availability

The software code for the proposed algorithm is publicly available at GitHub: https://github.com/Tulika-opt/Multi-Level-QIM-for-Automatic-Clustering-of-HSI.git

References

  • Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958

    Article  Google Scholar 

  • Abualigah L, Elaziz MA, Sumari P et al (2022) Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer. Exp Syst Appl 191:116158

    Article  Google Scholar 

  • Abualigah L, Gandomi AH, Elaziz MA, et al (2021) Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics 10(2):101

  • Acampora G, Schiattarella R, Vitiello A (2022) Using quantum amplitude amplification in genetic algorithms. Exp Syst Appl 209:118203

    Article  Google Scholar 

  • Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    Article  MathSciNet  MATH  Google Scholar 

  • Akinola OA, Ezugwu AE, Oyelade ON et al (2022) A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets. Sci Rep 12:14945

    Article  Google Scholar 

  • Aliniya Z, Mirroshandel SA (2019) A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Exp Syst Appl 117:243–266

    Article  Google Scholar 

  • Almotairi KH, Abualigah L (2022) Hybrid reptile search algorithm and remora optimization algorithm for optimization tasks and data clustering. Symmetry 14(3)

  • Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23:715–734

    Article  Google Scholar 

  • Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  • Baker FB, Hubert LJ (1975) Measuring the power of hierarchical cluster analysis. J Am Stat Assoc 70(349):31–38

    Article  MATH  Google Scholar 

  • Baumgardner MF, Biehl LL, Landgrebe DA (2015) 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3. https://purr.purdue.edu/publications/1947/1. Accessed 09 May 2019

  • Bezdek JC, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  • Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Patt Recog Lett 19(8):741–747

    Article  MATH  Google Scholar 

  • Cai Y, Liu X, Cai Z (2020) Bs-nets: An end-to-end framework for band selection of hyperspectral image. IEEE Trans Geosci Remote Sens 58(3):1969–1984

    Article  Google Scholar 

  • Caliński T, JA H (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Cao F, Mishra DR, Schalles JF et al (2018) Evaluating ultraviolet (uv) based photochemistry in optically complex coastal waters using the hyperspectral imager for the coastal ocean (hico). Estuar Coast Shelf Sci 215:199–206

    Article  Google Scholar 

  • Dey A, Dey S, Bhattacharyya S et al (2020) Novel quantum inspired approaches for automatic clustering of gray level images using particle swarm optimization, spider monkey optimization and ageist spider monkey optimization algorithms. Appl Soft Comput 88:106040

    Article  Google Scholar 

  • Ding C, Zheng M, Chen F, et al (2022) Hyperspectral image classification promotion using clustering inspired active learning. Remote Sensing 14(3):596. https://doi.org/10.3390/rs14030596. Accessed 1 May 2023

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B (Cybern) 26(1):29–41

    Article  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  MathSciNet  MATH  Google Scholar 

  • Duong HQ, Nguyen QH, Ngguyen DT et al (2022) Pso based hybrid pid-flc sugeno control for excitation system of large synchronous motor. Emerg Sci J 6:1375–1393

    Article  Google Scholar 

  • Dutta T, Bhattacharyya S, Dey S et al (2020) Border collie optimization. IEEE. Access 8:109177–109197

    Article  Google Scholar 

  • Dutta T, Dey S, Bhattacharyya S (2020) Automatic Clustering of Hyperspectral Images Using Qutrit Based Particle Swarm Optimization. Springer Singapore, Singapore, pp 21–31

    Google Scholar 

  • Dutta T, Dey S, Bhattacharyya S et al (2021) Quantum fractional order darwinian particle swarm optimization for hyperspectral multi-level image thresholding. Appl Soft Comput 113:107976

    Article  Google Scholar 

  • Dutta T, Dey S, Bhattacharyya S et al (2021) Hyperspectral multi-level image thresholding using qutrit genetic algorithm. Exp Syst Appl 181:115107

    Article  Google Scholar 

  • Dutta T, Bhattacharyya S, Mukhopadhyay S (2021a) Automatic clustering of hyperspectral images using qutrit exponential decomposition particle swarm optimization. In: 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS). pp 289–292

  • Elmaizi A, Nhaila H, Sarhrouni E et al (2019) A novel information gain based approach for classification and dimensionality reduction of hyperspectral images. Procedia Comput Sci 148:126–134

    Article  Google Scholar 

  • Ezugwu AE, Adeleke OJ, Akinyelu AA et al (2020) A conceptual comparison of several metaheuristic algorithms on continuous optimization problems. Neural Comput Appl 32:6207–6251

    Article  Google Scholar 

  • Fang L, Qiu T, Zhao H et al (2019) A hybrid active contour model based on global and local information for medical image segmentation. Multidim Syst Signal Process 30(2):689–703

    Article  MathSciNet  MATH  Google Scholar 

  • Gharehchopogh F (2022) Quantum-inspired metaheuristic algorithms: comprehensive survey and classification. Artif Intell Rev

  • Ghosh SK, Ghosh A (2022) Correlation based cluster validity index for recognition of leukemia mediating biomarkers. In: Mandal JK, De D (eds) Advanced Techniques for IoT Applications. Springer Singapore, Singapore, pp 65–74

    Chapter  Google Scholar 

  • Goh A, Vidal R (2007) Segmenting motions of different types by unsupervised manifold clustering. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. pp 1–6

  • Gokhale P, Baker JM, Duckering C et al (2020) Extending the frontier of quantum computers with qutrits. IEEE Micro 40(3):64–72

  • Green A, Berman M, Switzer P et al (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74

  • Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Article  Google Scholar 

  • Han T, Niu S, Gao X et al (2022) Deep low-rank graph convolutional subspace clustering for hyperspectral image. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  • Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • He C, Zhang Y, Gong D, et al (2022) A multi-task bee colony band selection algorithm with variable-size clustering for hyperspectral images. IEEE Trans Evol Comput 1:26

  • Hilali-Jaghdam I, Ishak AB, Abdel-Khalek S et al (2020) Quantum and classical genetic algorithms for multilevel segmentation of medical images: A comparative study. Comput Commun 162:83–93

    Article  Google Scholar 

  • Holland JH (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge

    Book  Google Scholar 

  • Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  • Huo F, Sun X, Ren W (2020) Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm. Multimedia Tools Appl 79:2447–2471

    Article  Google Scholar 

  • ibm (2022) Untitled circuit - ibm quantum. https://quantum-computing.ibm.com/composer/files/23775edf4643561fe64d3e5253939e74. Accessed 30 June 2022

  • ipd (2019) Purr - publications: 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3. https://purr.purdue.edu/publications/1947/1. Accessed 5 Sept 2019

  • Javed A, Kim YC, Khoo MCK et al (2016) Dynamic 3-d mr visualization and detection of upper airway obstruction during sleep using region-growing segmentation. IEEE Trans Biomed Eng 63(2):431–437

    Article  Google Scholar 

  • Jia H, Peng X, Lang C (2021) Remora optimization algorithm. Expert Syst Appl 185:115665

    Article  Google Scholar 

  • Kelam H, Venkatesan M (2019) Optimal band selection using generalized covering-based rough sets on hyperspectral remote sensing big data. In: Peter JD, Alavi AH, Javadi B (eds) Advances in Big Data and Cloud Computing. Springer Singapore, Singapore, pp 263–273

    Chapter  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol 4. pp 1942–1948

  • Khalaf T, Çağlar H, Çağlar A et al (2020) Particle swarm optimization based approach for estimation of costs and duration of construction projects. Civil Eng J 6:384–401

    Article  Google Scholar 

  • Khrissi L, Akkad NE, Satori H et al (2022) Clustering method and sine cosine algorithm for image segmentation. Evol Intell 15:669–682

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  MATH  Google Scholar 

  • Li F, Zhang P, Huchuan L (2018) Unsupervised band selection of hyperspectral images via multi-dictionary sparse representation. IEEE Access 6:71632–71643

    Article  Google Scholar 

  • Li JY, Guo SM, Gu L et al (2022) Quantum evolutionary algorithm based power optimization control strategy for china initiative accelerator driven subcritical system. Ann Nucl Energy 166:108678

    Article  Google Scholar 

  • Liao W, Pizurica A, Scheunders P et al (2013) Semisupervised local discriminant analysis for feature extraction in hyperspectral images. IEEE Trans Geosci Remote Sens 51(1):184–198

    Article  Google Scholar 

  • Li C, Tang X, Shi L, et al (2022a) A two-staged feature extraction method based on total variation for hyperspectral images. Remote Sens 14(2):302

  • Liu T, Zhang P, Cui G et al (2021) Fracture performance prediction of polyvinyl alcohol fiber-reinforced cementitious composites containing nano-sio2 using least-squares support vector machine optimized with quantum-behaved particle swarm optimization algorithm. Theor Appl Fract Mech 115:103074

    Article  Google Scholar 

  • Long W, Jiao J, Liang X et al (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Article  Google Scholar 

  • Loubiére P, Jourdan A, Siarry P, Chelouah R (2018) A sensitivity analysis method aimed at enhancing the metaheuristics for continuous optimization. Artif Intell Rev 50:625–647

    Article  Google Scholar 

  • Ma B, Qi J, Wu Y et al (2022) Parameter estimation of the covid-19 transmission model using an improved quantum-behaved particle swarm optimization algorithm. Digit Signal Process 127:103577

    Article  Google Scholar 

  • Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. pp 281–297

  • Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Patt Anal Mach Intell 24:1650–1654

    Article  Google Scholar 

  • McMahon D (2008) Quantum Computing Explained. Wiley, Hoboken

    MATH  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mousavi S, Afghah F, Ashdown JD et al (2019) Use of a quantum genetic algorithm for coalition formation in large-scale uav networks. Ad Hoc Netw 87:26–36

    Article  Google Scholar 

  • Muazu AA, Hashim AS, Sarlan A (2022) Review of nature inspired metaheuristic algorithm selection for combinatorial t-way testing. IEEE Access 10:27404–27431

    Article  Google Scholar 

  • Narayanan A, Moore M (1996) Quantum-inspired genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation. pp 61–66

  • Nielsen MA, Chuang I (2002) Quantum computation and quantum information. Am J Phys 70(5):558–559

    Article  Google Scholar 

  • Oh E, Lee H (2022) Effective route generation framework using quantum mechanism-based multi-directional and parallel ant colony optimization. Comput Ind Eng 169:108–308

    Article  Google Scholar 

  • pav (2019) Hyperspectral data set. http://lesun.weebly.com/hyperspectral-data-set.html. Accessed 5 Sept 2019

  • Pavlidis A, Floratos E (2021) Quantum-fourier-transform-based quantum arithmetic with qudits. Phys Rev A 103:032417

    Article  MathSciNet  Google Scholar 

  • Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land inf Syst 62:115–123

    Google Scholar 

  • Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  • Rylander B, Soule T, Foster J, et al (2000) Quantum genetic algorithms. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, GECCO’00. Morgan Kaufmann Publishers Inc., San Francisco, p 373

  • S. Menesy A, Sultan HM, Selim A, G. Ashmawy M, Kamel S (2020) Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8:1146–1159

    Article  Google Scholar 

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  • Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp 1(4):407–414

  • Song W, Hua Z (2020) Multi-exemplar particle swarm optimization. IEEE. Access 8:176363–176374

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Sudjalim TR, Woods MG, Manton DJ et al (2007) Prevention of demineralization around orthodontic brackets in vitro. Am J Orthod Dentofac Orthop 131(6):705.e1-705.e9

    Article  Google Scholar 

  • Surono S, Goh KW, Onn C et al (2022) Optimization of markov weighted fuzzy time series forecasting using genetic algorithm (ga) and particle swarm optimization (pso). Emerg Sci J 6:1375–1393

    Article  Google Scholar 

  • Tan K, Wu F, Du Q et al (2019) A parallel gaussian-bernoulli restricted boltzmann machine for mining area classification with hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 12(2):627–636

    Article  Google Scholar 

  • Tavakkol B, Choi J, Jeong MK et al (2022) Object-based cluster validation with densities. Pattern Recog 121:108223

    Article  Google Scholar 

  • Tkachuk V (2018) Quantum genetic algorithm based on qutrits and its application. Mathematical Problems in Engineering 2018(8614073):8. https://doi.org/10.1155/2018/8614073

  • Tu S, Rehman OU, Rehman SU et al (2020) A novel quantum inspired particle swarm optimization algorithm for electromagnetic applications. IEEE Access 8:21909–21916

    Article  Google Scholar 

  • Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need, NIPS’17. Curran Associates Inc., Red Hook, pp 6000–6010

    Google Scholar 

  • Villa A, Benediktsson JA, Chanussot J et al (2011) Hyperspectral image classification with independent component discriminant analysis. IEEE Trans Geosci Remote Sens 49(12):4865–4876

    Article  Google Scholar 

  • Wang X, Tan K, Du Q et al (2019) Caps-triplegan: Gan-assisted capsnet for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(9):7232–7245

    Article  Google Scholar 

  • Weijtmans P, C.Shan, Tan T, et al (2019) A dual stream network for tumor detection in hyperspectral images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). pp 1256–1259

  • Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Wu YC, Lee W, Chien CW (2011) Modified the performance of differential evolution algorithm with dual evolution strategy. In: International conference on machine learning and computing. pp 57–63

  • Wu T, Wu D, Jia H, et al (2022) A modified gorilla troops optimizer for global optimization problem. Appl Sci 12(19):10144

  • Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  • Xie F, Li F, Lei C et al (2019) Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification. Appl Soft Comput 75:428–440

    Article  Google Scholar 

  • Zhang H, Zhai H, Zhang L et al (2016) Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 54(6):3672–3684

  • Zhang Q, Li H, Liu Y et al (2021) A new quantum particle swarm optimization algorithm for controller placement problem in software-defined networking. Comput Electr Eng 95:107–456

    Article  Google Scholar 

  • Zhang Y, Desai MD, Zhang J, et al (1999) Adaptive subspace decomposition for hyperspectral data dimensionality reduction. In: Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348). pp 326–329

  • Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388:114–194

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao K, Dai Y, Jia Z, et al (2021) General fuzzy c-means clustering strategy: Using objective function to control fuzziness of clustering results. IEEE Trans Fuzzy Syst 1:388

  • Zhong Y, Zhang L, Gong W (2011) Unsupervised remote sensing image classification using an artificial immune network. Int J Remote Sens 32(19):5461–5483

    Article  Google Scholar 

  • Zhong Z, Li J, Luo Z et al (2018) Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858

    Article  Google Scholar 

Download references

Funding

The authors hereby declare that this work received no funding from any funding organization.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Writing - original draft preparation: Tulika Dutta; Formal analysis and investigation, Writing - review and editing: Siddhartha Bhattacharyya; Writing - review and editing, Supervision: Bijaya Ketan Panigrahi; Writing - review and editing, Supervision: Ivan Zelinka; Supervision: Leo Mrsic.

Corresponding author

Correspondence to Siddhartha Bhattacharyya.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no conflicting interest with the reviewers or any funding organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Siddhartha Bhattacharyya, Bijaya Ketan Panigrahi, Ivan Zelinka, and Leo Mrsic have contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1287 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, T., Bhattacharyya, S., Panigrahi, B.K. et al. Multi-level quantum inspired metaheuristics for automatic clustering of hyperspectral images. Quantum Mach. Intell. 5, 22 (2023). https://doi.org/10.1007/s42484-023-00110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42484-023-00110-7

Keywords

Navigation