[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pure boron nitride nanotube thread-based woven textile for thermal neutron shielding with extreme thermal stability

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Long-distance space missions encounter a significant hurdle in the form of space radiation, which calls for effective radiation shielding materials to protect astronauts and critical equipment. It is in response to this challenge that we developed the first-ever example of pure boron nitride nanotube (BNNT) woven textiles. For this, we prepared wet-spun aromatic amide polymer (AAP) and BNNT (AB) composite threads using the lyotropic molecular self-assembly (LMSA) method. The 1D AB threads provide the necessary continuity and pliability to easily fabricate macroscopic 2D woven textiles. Finally, we successfully developed 2D BNNT woven textiles by applying the soft domain selective degradation (SDSD) process, which selectively removes only the thermally labile organic domain of AAP. This process ensures the retention of the 1D fibrous structure of the thermally stable inorganic domain of BNNT. The resulting pure BNNT woven textile exhibits thermal neutron shielding performance (0.48 mm−1) and outstanding thermal resistance (1350 °C), making it a promising material for space applications.

Graphical Abstract

The pure BNNT thread-based woven textiles, created using the lyotropic molecular self-assembly method and soft domain selective degradation process, offer an innovative solution to protect both astronauts and critical electronics from the hazards of space radiation at extreme temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nguyen T (2020) Powering human settlements in space. ACS Cent Sci 6:450

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Santomartino R, Averesch NJH, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, Mcmahon S, Mohanty A, Maria SRS, Urbaniak C, Volger R, Yang J, Zea L (2023) Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat Commun 14:1391

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sukumaran AK, Zhang C, Rengifo S, Renfro M, Garino G, Scott W, Mazurkivich M, Gray A, Demengehi G, Rabenberg E, Volz M, Thompson M, Phillips B, Jimenez N, Mora F, Lum C, Stephens K, Chu SH, Park C, Agarwal A (2024) Tribological and radiation shielding response of novel titanium-boron nitride coatings for lunar structural components. Surf Coat Tech 476:130300

    CAS  Google Scholar 

  4. Nambiar S, Yeow JTW (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces 4:5717

    CAS  PubMed  Google Scholar 

  5. Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu S (2018) Advanced materials for next-generation spacecraft. Adv Mater 30:1802201

    Google Scholar 

  6. O’Connor A, Park C, Bolch WE, Enqvist A, Manuel MV (2024) Designing lightweight neutron absorbing composites using a comprehensive absorber areal density metric. Appl Radiat Iso 206:11227

    Google Scholar 

  7. Zhu L, Li N, Childs PRN (2018) Light-weighting in aerospace component and system design. Propuls Power Res 7:103

    Google Scholar 

  8. O’Connor A, Park C, Baciak JE, Manuel MV (2024) Mitigating space radiation using magnesium(-lithium) and boron carbide composites. Acta Astronaut 216:37

    Google Scholar 

  9. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966

    CAS  PubMed  Google Scholar 

  10. Snapp P, Cho C, Lee D, Haque MF, Nam SW, Park C (2020) Tunable piezoelectricity of multifunctional boron nitride nanotube/poly(dimethylsiloxane) stretchable composites. Adv Mater 32:2004607

    CAS  Google Scholar 

  11. Bacca N, Zhang C, Paul T, Sukumaran AK, John D, Rengifo S, Park C, Chu SH, Mazurkivich M, Scott W, Agarwal A (2022) Tribological and neutron radiation properties of boron nitride nanotubes reinforced titanium composites under lunar environment. J Mater Res 37:4582

    CAS  Google Scholar 

  12. Kim JH, Pham TV, Hwang JH, Kim CS, Kim MJ (2018) Boron nitride nanotubes: synthesis and applications. Nano Converg 5:17

    PubMed  PubMed Central  Google Scholar 

  13. Jakubinek MB, Kim KS, Kim MJ, Martí AA, Pasquali M (2022) Recent advances and perspective on boron nitride nanotubes: from synthesis to applications. J Mater Res 37:4403

    CAS  Google Scholar 

  14. Nautiyal P, Zhang C, Loganathan A, Boesl B, Agarwal A (2019) High-temperature mechanics of boron nitride nanotube “buckypaper” for engineering advanced structural materials. ACS Appl Nano Mater 2:4402

    CAS  Google Scholar 

  15. Zhang J, Uzun S, Seyedin S, Lynch PA, Akuzum B, Wang Z, Qin S, Alhabeb M, Shuck CE, Lei W, Kumbur EC, Yang W, Wang X, Dion G, Razal JM, Gogotsi Y (2020) Additive-free MXene liquid crystals and fibers. ACS Cent Sci 6:254

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim YJ, Kim DY, Lee JH, Nah C, Lee JH, Lee MH, Kim HY, Kuo SW, Shin SH, Jeong KU (2012) A macroscopically oriented lyotropic chromonic liquid crystalline nanofiber mat embedding self-assembled sunset-yellow FCF nanocolumns. J Mater Chem 22:13477

    CAS  Google Scholar 

  17. Cho Y, Christoff-Tempesta T, Kim DY, Lamour G, Ortony JH (2021) Domain-selective thermal decomposition within supramolecular nanoribbons. Nat Commun 12:7340

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia Y, Ajayi TD, Morales J, Chowdhury MAR, Sauti G, Chu SH, Park C, Xu C (2019) Thermal properties of polymer-derived ceramic reinforced with boron nitride nanotubes. J Am Ceram Soc 102:7584

    CAS  Google Scholar 

  19. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979

    CAS  PubMed  Google Scholar 

  20. Hu C, Wang F, Cui X, Zhu Y (2023) Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv Compos Hybrid Mater 6:70

    Google Scholar 

  21. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Waarbeek RFT, Jong JJD, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182

    CAS  PubMed  Google Scholar 

  22. Kim SG, Heo SJ, Kim JG, Kim SO, Lee D, Kim M, Kim ND, Kim DY, Hwang JY, Chae HG, Ku BC (2022) Ultrastrong hybrid fibers with tunable macromolecular interfaces of graphene oxide and carbon nanotube for multifunctional applications. Adv Sci 9:2203008

    CAS  Google Scholar 

  23. Ginestra CJS, Martínez-Jiménez C, Ya’akobi MA, Dewey OS, Mcwilliams ADS, Headrick RJ, Acapulco JA, Scammell LR, Smith MW, Kosynkin DV, Marincel DM, Park C, Chu SH, Talmon Y, Martí AA, Pasquali M (2022) Liquid crystals of neat boron nitride nanotubes and their assembly into ordered macroscopic materials. Nat Commun 13:3136

    Google Scholar 

  24. Christoff-Tempesta T, Cho Y, Kim DY, Geri M, Lamour G, Lew AJ, Zuo X, Lindemann WR, Ortony JH (2021) Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nat Nanotechnol 16:447–454

    CAS  PubMed  Google Scholar 

  25. Roberts AD, Kelly P, Bain J, Morrison JJ, Wimpenny I, Barrow M, Woodward RT, Gresil M, Blanford C, Hay S, Blaker JJ, Yeates SG, Scrutton NS (2019) Graphene-aramid nanocomposite fibers via superacid co-processing. Chem Commun 55:11703

    CAS  Google Scholar 

  26. Ryu KH, Kim JG, Lee D, Kim SG, Ku BC, Hwang JY, Jeong KU, Kim ND, Kim DY (2023) Boost up the mechanical and electrical property of CNT fibers by governing lyotropic liquid crystalline mesophases with aramid polymers for robust lightweight wiring applications. Adv Fiber Mater 5:514

    CAS  Google Scholar 

  27. Kim DY, Lim SI, Jung D, Hwang JK, Kim N, Jeong KU (2017) Self-assembly and polymer-stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq Cryst Rev 5:34

    CAS  Google Scholar 

  28. Davidson ZS, Huang Y, Gross A, Martinze A, Still T, Zhou C, Collings PJ, Kamien RD, Yodh AG (2017) Deposition and drying dynamics of liquid crystal droplets. Nat Commun 8:15642

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Adnan M, Marincel DM, Kleinerman O, Chu SH, Park C, Hocker SJA, Fay C, Arepalli C, Talmon Y, Pasquali M (2018) Extraction of boron nitride nanotubes and fabrication of macroscopic articles using chlorosulfonic acid. Nano Lett 18:1615

    CAS  PubMed  Google Scholar 

  30. Kleinerman O, Adnan M, Marincel DM, Ma AWK, Bengio EA, Park C, Chu SH, Pasquali M, Talmon Y (2017) Dissolution and characterization of boron nitride nanotubes in superacid. Langmuir 33:14340

    CAS  PubMed  Google Scholar 

  31. Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50:4979

    CAS  Google Scholar 

  32. Vilatela JJ, Windle AH (2010) Yarn-like carbon nanotube fibers. Adv Mater 22:4959

    CAS  PubMed  Google Scholar 

  33. Chang H, Lu M, Arias-Monje PJ, Luo J, Park C, Kumar S (2019) Determining the orientation and interfacial stress transfer of boron nitride nanotube composite fibers for reinforced polymeric materials. ACS Appl Nano Mater 2:6670

    CAS  Google Scholar 

  34. Chen HJ, Bai QY, Liu MC, Wu G, Wang YZ (2021) Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling. Green Chem 23:7646

    CAS  Google Scholar 

  35. Xie F, Jia F, Zhuo L, Jin Z, Wang D, Lu Z (2021) Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application. J Mater Sci: Mater Electron 32:7090

    CAS  Google Scholar 

  36. Harrison H, Lamb JT, Nowlin KS, Guenthner AJ, Ghiassi KB, Kelkar AD, Alston JR (2019) Quantification of hexagonal boron nitride impurities in boron nitride nanotubes via FTIR spectroscopy. Nanoscale Adv 1:1693

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu B, Gu Y, Liu Y, Wang S, Li M (2023) Space neutron radiation shielding property of continuous fiber and functional filler reinforced polymer composite using Monte Carlo simulation. Compos Part A Appl Sci Manuf 168:107483

    CAS  Google Scholar 

  38. Shang Y, Yang G, Su F, Feng Y, Ji Y, Liu D, Yin R, Liu C, Shen C (2020) Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos Commun 19:147

    Google Scholar 

  39. More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP (2021) Polymeric composite materials for radiation shielding: a review. Environ Chem Lett 19:2057

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsentalovich DE, Headrick RJ, Mirri F, Hao J, Behabtu N, Young CC, Pasquali M (2017) Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl Mater Interfaces 9:36189

    CAS  PubMed  Google Scholar 

  41. Yakobson BI, Samsonidze G, Samonidze GG (2000) Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38:1675

    CAS  Google Scholar 

  42. Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC (2022) One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomater 290:121861

    CAS  Google Scholar 

  43. Weiss P, Mohamed MP, Gobert T, Chouard Y, Singh N, Chalal T, Schmied S, Schweins M, Stegmaier T, Gresser GT, Groemer G, Sejkora N, Das S, Rampini R, Hołyńska M (2020) Advanced materials for future lunar extravehicular activity space suit. Adv Mater Technol 5:2000028

    CAS  Google Scholar 

  44. Prinzie J, Simanjuntak FM, Leroux P, Prodromakis T (2021) Low-power electronic technologies for harsh radiation environments. Nat Electron 4:243

    Google Scholar 

  45. Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430

    CAS  Google Scholar 

  46. Tran BH, Tieu K, Wan S, Zhu H, Cuia S, Wang L (2018) Understanding the tribological impacts of alkali element on lubrication of binary borate melt. RSC Adv 8:28847

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marincel DM, Adnan M, Ma J, Bengio EA, Trafford MA, Kleinerman O, Kosynkin DM, Chu SH, Park C, Hocker SJA, Fay CC, Arepalli S, Martí AA, Talmon Y, Pasquali M (2019) Scalable purification of boron nitride nanotubes via wet thermal etching. Chem Mater 31:1520

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Nano & Material Technology Development Program (MSIT RS-2024-00448639); and the Korea Research Institute for Defense Technology Planning and Advancement (DAPA KRIT-CT-21–014).

Author information

Authors and Affiliations

Authors

Contributions

The author contribution can be briefly stated as follows: Ryu KH: investigation, writing; Kang MS: investigation, visualization; You NH: methodology, review; Jang SG: methodology, review; Ahn SH: methodology, review; Kim DY: conceptualization, review, editing.

Corresponding author

Correspondence to Dae-Yoon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4456 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, KH., Kang, M., You, NH. et al. Pure boron nitride nanotube thread-based woven textile for thermal neutron shielding with extreme thermal stability. Adv Compos Hybrid Mater 7, 159 (2024). https://doi.org/10.1007/s42114-024-00986-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00986-4

Keywords

Navigation