Abstract
This work describes the development of RBOT, a robot-driven radio base station maintenance system. RBS deployment and maintenance tasks are increasing both in complexity and density with the introduction of 5G microcells. The main objective behind our application is to reduce maintenance costs by developing an integrated system based on a robotic arm to operate on the RBS front plane. This work details the challenges and solutions for maintaining the connectivity of networking cables in such an environment. More specifically, it discusses the problems of inserting communication cables and removing defective ones attached to an RBS equipment. We also examine the creation and evolution of a maintenance system from a simulation scenario to a real-world setup. RBOT’s interface allows both remote teleoperation and autonomous operation. It also contains Augmented Reality features providing a first-person view for remote teleoperation to increase environmental awareness. Furthermore, by applying convolutional neural networks for faulty cable classification, RBOT can actuate over the RBS and manipulate the cables with a unique, accurate, and robust gripper we specially designed for cable connector handling.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Change history
09 November 2021
A Correction to this paper has been published: https://doi.org/10.1007/s41315-021-00214-y
References
Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning—a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13 (2010). https://doi.org/10.1109/MCI.2010.938364
Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and GNC design of flexible systems for space debris active removal. Acta Astronaut. (2015). https://doi.org/10.1016/j.actaastro.2015.01.014. (dynamics and control of space systems)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145 (1997). https://doi.org/10.1016/S0031-3203(96)00142-2
Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: Hybrid task cascade for instance segmentation. arXiv:abs/1901.07518 (2019)
D’Amore, G.: RF Testing During the Installation and Maintenance of Wireless Base Stations, High Frequency Electronics, pp. 24–25 (2009)
Ge, X., Tu, S., Mao, G., Wang, C., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72 (2016). https://doi.org/10.1109/MWC.2016.7422408
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. (2016)http://www.deeplearningbook.org. Accessed 3 Oct 2021
Gordejuela-Sanchez, F., Zhang, J.: In: IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, pp. 1–5 (2008)
Hamid, O.H., Smith, N.L., Barzanji, A.: In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 899–904 (2017). https://doi.org/10.1109/INDIN.2017.8104891
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 (2016)
Hida, M., He, Y., Yamamoto, Y., Maekawa, N., Tatsuno, K., Kunii, Y.: A task analysis and a controller system design for a power distribution line maintenance robot. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 102–107 (2012)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)
Lai, C.: In: Proceedings of the 2019 The 3rd International Conference on Digital Technology in Education (Association for Computing Machinery, New York, NY, USA, 2019), ICDTE, pp. 57-61 (2019). https://doi.org/10.1145/3369199.3369230
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998). https://doi.org/10.1109/5.726791
Lim, R.S., La, H.M., Shan, Z., Sheng, W.: Developing a crack inspection robot for bridge maintenance In: 2011 IEEE International Conference on Robotics and Automation, pp. 6288–6293 (2011)
Liu, Y., Tu, Y., Hsu, C., Chao, H.: Predicting malfunction of mobile network base station using machine learning approach In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4 (2019)
Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration CoRR. arXiv:abs/1805.07071 (2018)
Lynxmotion: Lynxmotion—little grip kit (no servos) (2020). http://www.lynxmotion.com/p-161-little-grip-kit-no-servos.aspx. Accessed 3 Oct 2021
Merkel, D.: Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)
Oughton, E.J., Frias, Z.: The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommun. Policy 42(8), 636 (2018). https://doi.org/10.1016/j.telpol.2017.07.009. (the implications of 5G networks: paving the way for mobile innovation?)
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software. Kobe, Japan (2009)
Rahman, A., Jin, J., Cricenti, A.L., Rahman, A., Kulkarni, A.: Communication-aware cloud robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Trans. Ind. Inform. 15(5), 2500 (2019)
Rao, S.K., Prasad, R.: Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 100(1), 145 (2018)
Reis, G., Dantas, M., Bezerra, D., Nunes, G., Dreyer, P., Ledebour, C., Kelner, J., Sadok, D., Souza, R., Lins, S., Marquezini, M.: Gripper design for radio base station autonomous maintenance system. Int. J. Autom. Comput. (2021). https://doi.org/10.1007/s11633-021-1300-5
Robotics, T.: Phantomx parallel ax-12 gripper (2020). https://www.trossenrobotics.com/p/phantomx-parallel-ax12-gripper.aspx. Accessed 3 Oct 2021
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1 (2019). https://doi.org/10.1186/s40537-019-0197-0
Smith, N., Teerawanit, J., Hamid, O.H.: In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3255–3260 (2018). https://doi.org/10.1109/SMC.2018.00551
Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345 (1989). https://doi.org/10.1109/70.34770
Volochiy, B., Zmysnyi, M., Kulyk, I.: In: 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), pp. 592–594 (2016)
Yaghoubi, F., Mahloo, M., Wosinska, L., Monti, P., Farias, Fd.S., Costa, J.C.W.A., Chen, J.: A techno-economic framework for 5G transport networks. IEEE Wirel. Commun. 25(5), 56 (2018). https://doi.org/10.1109/MWC.2018.1700233
Zhu, Y., Sapra, K., Reda, F.A., Shih, K.J., Newsam, S.D., Tao, A., Catanzaro, B.: Improving semantic segmentation via video propagation and label relaxation CoRR. arXiv:abs/1812.01593 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: In the original publication the section 4 has been inadvertently misspelled as "4 Network onfrastructure".
Rights and permissions
About this article
Cite this article
Sadok, D., Bezerra, D., Dantas, M. et al. Rbot: development of a robot-driven radio base station maintenance system. Int J Intell Robot Appl 6, 270–287 (2022). https://doi.org/10.1007/s41315-021-00206-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41315-021-00206-y