[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Structural constraint deep matrix factorization for sequential data clustering

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Nonnegative matrix factorization (NMF) plays a significant role of finding parts-based representations of nonnegative data that is widely used in data analysis applications. However, sequential data (e.g., video scene, human action) with ordered structures usually share obvious similar features between neighboring data points unless a sudden change occurs, it is important to exploit temporal information for sequential data representation. However, this remains a challenging problem for NMF-based methods, which are unsuitable for the analysis of such data. In this work, we propose structural constraint deep matrix factorization (SC-MF), which captures the ordered structure information into the deep matrix factorization process to improve data representation. With a novel neighbor penalty term in each layer process, SC-MF enforces the similarity of neighboring data in the final layer. The appropriate iterative updating algorithm is derived to solve SC-MF’s objective function. The proofs of the convergence and complexity of the SC-MF are also presented. Experimental results on several real sequential datasets for face clustering, video scene segmentation, and action segmentation tasks demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.escience.cn/people/fpnie/papers.html.

  2. https://github.com/ZJULearning.

  3. Both SSC and OSC can be released at https://github.com/sjtrny/SubKit.

  4. http://www.pris.net.cn/introduction/teacher/lichunguang.

  5. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

  6. https://cse.buffalo.edu/~jcorso/r/actionbank/.

References

  • Anil, K.: Jain: data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  • Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. Knowl. Data Eng. 7(12), 1624–1637 (2005)

    Article  Google Scholar 

  • Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  • Cao, X., Wei, X., Han, Y., et al.: Robust face clustering via tensor decomposition. IEEE Trans. Cybern. 45(11), 2546–2557 (2015)

    Article  Google Scholar 

  • Chen, Y., Bordes, J.B., Filliat, D.: Comparison studies on active cross-situational object-word learning using non-negative matrix factorization and latent dirichlet allocation. IEEE Trans. Cogn. Dev. Syst. 10(4), 1023–1034 (2018)

    Article  Google Scholar 

  • Ding, C., Li, T., Jordan, M., et al.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

    Article  Google Scholar 

  • Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  • Feng, X.R., Li, H.C., Li, J., et al.: Hyperspectral unmixing using sparsity constrained deep nonnegative matrix factorization with total variation. IEEE Trans. Geosci. Remote Sens. 56(10), 6245–6257 (2018)

    Article  Google Scholar 

  • Guan, N.Y., Liu, T.L., et al.: Truncated cauchy non-negative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 246–259 (2019)

    Article  Google Scholar 

  • Haijun, L., Jian, C., Feng, W.: Sequential subspace clustering via temporal smoothness for sequential data segmentation. IEEE Trans. ImageProcess. 27(2), 866–878 (2018)

    Article  MathSciNet  Google Scholar 

  • Handong, Z.H., Zhengming, D., Yun F.: Multi-view clustering via deep matrix factorization. In: Proc. AAAI Conf. Artif. Intell., San Francisco, California, USA, pp. 2921–2927 (2017)

  • Huang, J., Nie, F., Huang, H., Ding, C.: Robust manifold nonnegative matrix factorization. ACM Trans Knowl Disc Data 8(3), 11 (2014)

    Google Scholar 

  • Huang, S., Zhao, P., Ren, Y., et al.: Self-paced and soft-weighted nonnegative matrix factorization for data representation. Knowl.-Based Syst. 164(15), 29–37 (2018)

    Google Scholar 

  • Kuang, D., Ding, C., Park, H.: Symmetric nonnegative matrix factorization for graph clustering. In: Proc. Of the SIAM Int Conf. Data Mining, Anaheim, CA, USA, pp. 106–117 (2012)

  • Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems (NIPS 2000), pp. 556–562 (2001)

  • Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  • Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1644–1657 (2014)

    Article  Google Scholar 

  • Li, S., Li, K., Fu, Y.: Temporal subspace clustering for human motion segmentation. In: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, pp. 4453–4461 (2015)

  • Li, C.G., You, C., Vidal, R.: Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans. Image Process. 26(6), 2988–3001 (2017a)

    Article  MathSciNet  Google Scholar 

  • Li, G.P., Zhang, X.Y., Zheng, S.Y., et al.: Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation. Neurocomputing 237, 1–11 (2017b)

    Article  Google Scholar 

  • Liu, H.F., Wu, Z.H., Li, X.L., et al.: Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1299–1311 (2012)

    Article  Google Scholar 

  • Liu, W., Zha, Z.J., Wang, Y., et al.: p-Laplacian regularized sparse coding for human activity recognition. IEEE Trans. Industrial Electronics 63(8), 5120–5129 (2016)

    Google Scholar 

  • Luo, X.Y., Wu, X.Y., Chen, L., et al.: Forearm muscle synergy reducing dimension of the feature matrix in hand gesture recognition. In: 2018 3rd IEEE Int. Conf. Adv. Robitics Mech., pp. 691–696 (2018)

  • Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval 1. Cambridge, U.K. (2008)

    Book  Google Scholar 

  • Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proc. Adv. Neural Inf. Process. Syst., pp. 849–856 (2001)

  • Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York, USA, pp. 977–986 (2014)

  • Panda, R., Kuanar, S.K., Chowdhury, A.S.: Nyström approximated temporally constrained multi similarity spectral clustering approach for movie scene detection. IEEE Trans. Cybern. 48(3), 836–847 (2018)

    Article  Google Scholar 

  • Pei, Y., Chakraborty, N., Sycara, K.: Nonnegative matrix tri-factorization with graph regularization for community detection in social networks. In: Proc. Int. Joint Conf. Artif. Intell. (IJCAI), Austin, Texas, USA, pp. 2083–2089 (2015)

  • Sadanand, S., Corso J.J.: Action bank: a high-level representation of activity in video. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Providence, RI, USA, pp. 1234–124 (2012)

  • Santuz, A., Ekizos, A., Janshen, L., et al.: Modular control of human movement during running: an open access data set. Front.s Physiol. 9, 1509 (2018)

    Article  Google Scholar 

  • Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  • Shi, Y., Otto, C., Jain, A.K.: Face clustering: representation and pairwise constraints. IEEE Trans. Inform. Forensics Security 13(7), 1626–1640 (2018)

    Article  Google Scholar 

  • Song, H.A., Lee, S.Y.: Hierarchical data representation model- multi-layer nmf. ICLR, vol. Abs/1301.6316 (2013)

  • Tierney, S., Gao, J., Guo, Y.: Subspace clustering for sequential data. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, Ohio, USA, pp. 1019–1026 (2014)

  • Trigeorgis, G., Bousmalis, K., Zafeiriou, S., et al.: A deep matrix factorization method for learning attribute representations. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 17–429 (2017)

    Article  Google Scholar 

  • Wang, J., et al.: Robust nonnegative matrix factorization with ordered structure constraints. In: Proc. Int. Joint Conf. Neural Netw., Anchorage, Alaska, USA, pp. 478–485 (2017a)

  • Wang, J., Tian, F., Wang, X., et al.: Multi-component nonnegative matrix factorization. In: Proc. Int. Joint Conf. Artif. Intell. (IJCAI), Melbourne, Australia, pp. 2922–2928 (2017b)

  • Wang, W., Tian, F., Liu, W., et al.: Ranking preserving nonnegative matrix factorization. In: Proc. Int. Joint Conf. Artif. Intell. (IJCAI), Stockholm, Sweden, pp. 2776–2782 (2018)

  • Wang, H., Oneata, D., Verbeek, J., et al.: A robust and efficient video representation for action recognition. Int. J. Comput. Vision 119(3), 219–238 (2016)

    Article  MathSciNet  Google Scholar 

  • Wang, L., Ding, Z., Fu, Y.: Low-rank transfer human motion segmentation. IEEE Trans. Image Process. 28(2), 1023–1034 (2019)

    Article  MathSciNet  Google Scholar 

  • Xi, P., Jiashi, F., Shijie, X., et al.: Structured auto encoders for subspace clustering. IEEE Trans. Image Process. 27(10), 5076–5086 (2018)

    Article  MathSciNet  Google Scholar 

  • Xiao, Y.-H., Zhu, Z.-F., Zhao, Y., Wei, Y.-C.: Class-driven non-negative matrix factorization for image representation. J. Comput. Sci. Technol. 28(5), 751–761 (2013)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Hu, W., Xie, Y., et al.: Temporal restricted visual tracking via reverse-low-rank sparse learning. IEEE Trans. Cybern. 47(2), 485–498 (2017)

    Google Scholar 

  • Yin, M., Xie, S., Wu, Z., et al.: Subspace clustering via learning an adaptive low-rank graph. IEEE Trans. Image Process. 27(8), 3716–3728 (2018)

    Article  MathSciNet  Google Scholar 

  • Zengyou, H., Simeng, Z., Feiyang, G., et al.: Mining conditional discriminative sequential patterns. Inf. Sci. 478, 524–539 (2019)

    Article  Google Scholar 

  • Zhang, Z., Zhao, K.: Low-rank matrix approximation withmanifold regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1717–1729 (2013)

    Article  Google Scholar 

  • Zhao, J., Zhou, C., Huang, L., et al.: Fusion of unmanned aerial vehicle panchromatic and hyperspectral images combining joint skewness-kurtosis figures and a non-subsampled contour let transform. Sensors 18(10), 3467 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program(“973”Program) of China under Grant No. 2016YFB0100903, National High Technology Research and Development Program of China under Grant No. 2018YFE0204300, Beijing Municipal Science and Technology Commission special major under Grant No. D171100005017002, National Natural Science Foundation of China under Grant No. U1664263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, G. & Zhang, X. Structural constraint deep matrix factorization for sequential data clustering. Int J Intell Robot Appl 3, 443–456 (2019). https://doi.org/10.1007/s41315-019-00106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-019-00106-2

Keywords

Navigation